Browse Source

instance creation following a logistic distribution/ inverted qubo weights in SAT2QUBO

master
Tom 5 years ago
parent
commit
348c733656
4 changed files with 141 additions and 8 deletions
  1. +27
    -1
      test_data_extraction.py
  2. +2
    -2
      util/SAT2QUBO.py
  3. +92
    -1
      util/random_instance_pool.py
  4. +20
    -4
      util/script.py

+ 27
- 1
test_data_extraction.py View File

@ -7,10 +7,36 @@ import dimod
from tqdm import tqdm from tqdm import tqdm
def main(): def main():
instance_parameters()
#wmis_results() #wmis_results()
wmis_siman_results_alpha_num_of_assignments()
#wmis_siman_results_alpha_num_of_assignments()
#wmis_siman_results() #wmis_siman_results()
#minisat_runs() #minisat_runs()
def instance_parameters():
edb = script.connect_to_experimetns_db()
edb_cursor = edb.cursor()
idb = script.connect_to_instance_pool()
instances = queries.Instance_scope_query(idb)
instances.query("c42_vLogistic_1")
insert_row = ("INSERT INTO c42_vLogistic_1_instances "
"(instance_id, "
" number_of_clauses, "
" number_of_variables) "
"VALUES (%s, %s, %s)")
for instance, instance_id in instances:
edb_cursor.execute(insert_row, (str(instance_id),
int(instance.getNumberOfClauses()),
int(instance.getNumberOfVariables())))
edb.commit()
edb_cursor.close()
edb.close()
def wmis_siman_results(): def wmis_siman_results():
db = script.connect_to_instance_pool() db = script.connect_to_instance_pool()


+ 2
- 2
util/SAT2QUBO.py View File

@ -5,8 +5,8 @@ from . import kSAT
from tqdm import tqdm from tqdm import tqdm
import math import math
__VERTEX_WEIGHT__ = 1
__EDGE_WEIGHT__ = -2
__VERTEX_WEIGHT__ = -1
__EDGE_WEIGHT__ = 2
def WMISdictQUBO(kSATInstance): def WMISdictQUBO(kSATInstance):
quboInstance = {} quboInstance = {}


+ 92
- 1
util/random_instance_pool.py View File

@ -2,6 +2,12 @@
from . import randomSAT from . import randomSAT
import math
import random
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
class Random_instance_pool: class Random_instance_pool:
def __init__(self, parameter_range): def __init__(self, parameter_range):
@ -83,5 +89,90 @@ class Manual_range:
def next(self): def next(self):
return self.__next__() return self.__next__()
class Random_range:
def __init__(self, random_generator, steps):
self.__random_generator = random_generator
self.__steps = steps
self.__current_step = 0
def __iter__(self):
return self
def __next__(self):
if self.__current_step < self.__steps:
self.__current_step += 1
return self.__random_generator.random()
else:
raise StopIteration
def next(self):
return self.__next__()
class Random_logistic_variable_distribution:
def __init__(self,
number_of_clauses,
min_variables,
max_variables,
alpha_point_of_interest,
steepnesss):
self.__number_of_clauses = number_of_clauses
self.__min_variables = min_variables
self.__max_variables = max_variables
self.__alpha_point_of_interest = alpha_point_of_interest
self.__steepnesss = steepnesss
def random(self):
number_of_variables = 0
while (number_of_variables < self.__min_variables or
number_of_variables > self.__max_variables):
alpha = inv_logistic(random.random(),
1,
self.__steepnesss,
self.__alpha_point_of_interest)
number_of_variables = int(self.__number_of_clauses / alpha)
return number_of_variables
def inv_logistic(x, L, k, x0):
return math.log(math.pow(x / (L-x), 1/k)) + x0
def test():
sns.set()
data = []
logistic_distr = Random_logistic_variable_distribution(42, 5, 84, 4.5, 1)
rnd_range = Random_range(logistic_distr, 500)
for i in range(500):
#data.append(50/math.exp(random.uniform(5, 50)))
#v = 0
#while v < 5 or v > 84:
#v = int(42 / inv_logistic(random.random(), 1, 1, 4.5))
data.append(rnd_range.next())
data = np.array(data)
sns.distplot(data,
#bins=30,
norm_hist=True)
#sns.lineplot(list(range(2, 100)), data)
plt.show()
sns.distplot(42/data,
#bins=30,
norm_hist=True)
#sns.lineplot(list(range(2, 100)), data)
plt.show()
return data

+ 20
- 4
util/script.py View File

@ -10,6 +10,8 @@ from . import graph
import minorminer import minorminer
from tqdm import tqdm from tqdm import tqdm
import numpy as np import numpy as np
import random
import sys
def readConfig(configFilePath): def readConfig(configFilePath):
config = configparser.ConfigParser() config = configparser.ConfigParser()
@ -183,13 +185,22 @@ def __qubo_to_JSON(qubo):
return quboJSON return quboJSON
def write_wmis_embedding_to_pool_db(collection, qubo_id, solver_graph_id, embedding):
def write_wmis_embedding_to_pool_db(collection, qubo_id, solver_graph_id, seed, embedding):
if not __embedding_entry_exists(collection, qubo_id, solver_graph_id): if not __embedding_entry_exists(collection, qubo_id, solver_graph_id):
__prepare_new_wmis_embedding_entry(collection, qubo_id, solver_graph_id) __prepare_new_wmis_embedding_entry(collection, qubo_id, solver_graph_id)
collection.update_one( collection.update_one(
{"qubo": qubo_id, "solver_graph": solver_graph_id}, {"qubo": qubo_id, "solver_graph": solver_graph_id},
{"$push": {"embeddings": __embedding_to_array(embedding)}}
{
"$push":
{
"embeddings":
{
"embedding": __embedding_to_array(embedding),
"seed": seed
}
}
}
) )
def __embedding_entry_exists(collection, qubo_id, solver_graph_id): def __embedding_entry_exists(collection, qubo_id, solver_graph_id):
@ -250,20 +261,25 @@ def find_wmis_embeddings_for_scope(db, scope, solver_graph):
max_no_improvement = 10 max_no_improvement = 10
for i in range(5): for i in range(5):
if __embedding_entry_exists(db["embeddings"], qubo_id, solver_graph_id): if __embedding_entry_exists(db["embeddings"], qubo_id, solver_graph_id):
already_found += 1
if i == 0:
already_found += 1
break; break;
else: else:
nx_qubo = graph.qubo_to_nx_graph(qubo) nx_qubo = graph.qubo_to_nx_graph(qubo)
seed = random.randint(0, sys.maxsize)
emb = minorminer.find_embedding(nx_qubo.edges(), emb = minorminer.find_embedding(nx_qubo.edges(),
solver_graph.edges(), solver_graph.edges(),
return_overlap=True, return_overlap=True,
max_no_improvement=max_no_improvement)
max_no_improvement=max_no_improvement,
random_seed=seed)
if emb[1] == 1: if emb[1] == 1:
write_wmis_embedding_to_pool_db(db["embeddings"], write_wmis_embedding_to_pool_db(db["embeddings"],
qubo_id, qubo_id,
solver_graph_id, solver_graph_id,
seed,
emb[0]) emb[0])
new_embeddings_found += 1 new_embeddings_found += 1


Loading…
Cancel
Save