@ -0,0 +1,21 @@ | |||
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson | |||
Copyright (c) 2007-2010 Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a | |||
copy of this software and associated documentation files (the | |||
"Software"), to deal in the Software without restriction, including | |||
without limitation the rights to use, copy, modify, merge, publish, | |||
distribute, sublicense, and/or sell copies of the Software, and to | |||
permit persons to whom the Software is furnished to do so, subject to | |||
the following conditions: | |||
The above copyright notice and this permission notice shall be included | |||
in all copies or substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS | |||
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | |||
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | |||
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | |||
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
@ -0,0 +1,24 @@ | |||
================================================================================ | |||
DIRECTORY OVERVIEW: | |||
mtl/ Mini Template Library | |||
utils/ Generic helper code (I/O, Parsing, CPU-time, etc) | |||
core/ A core version of the solver | |||
simp/ An extended solver with simplification capabilities | |||
README | |||
LICENSE | |||
================================================================================ | |||
BUILDING: (release version: without assertions, statically linked, etc) | |||
export MROOT=<minisat-dir> (or setenv in cshell) | |||
cd { core | simp } | |||
gmake rs | |||
cp minisat_static <install-dir>/minisat | |||
================================================================================ | |||
EXAMPLES: | |||
Run minisat with same heuristics as version 2.0: | |||
> minisat <cnf-file> -no-luby -rinc=1.5 -phase-saving=0 -rnd-freq=0.02 |
@ -0,0 +1,89 @@ | |||
/****************************************************************************************[Dimacs.h] | |||
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson | |||
Copyright (c) 2007-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#ifndef Minisat_Dimacs_h | |||
#define Minisat_Dimacs_h | |||
#include <stdio.h> | |||
#include "utils/ParseUtils.h" | |||
#include "core/SolverTypes.h" | |||
namespace Minisat { | |||
//================================================================================================= | |||
// DIMACS Parser: | |||
template<class B, class Solver> | |||
static void readClause(B& in, Solver& S, vec<Lit>& lits) { | |||
int parsed_lit, var; | |||
lits.clear(); | |||
for (;;){ | |||
parsed_lit = parseInt(in); | |||
if (parsed_lit == 0) break; | |||
var = abs(parsed_lit)-1; | |||
while (var >= S.nVars()) S.newVar(); | |||
lits.push( (parsed_lit > 0) ? mkLit(var) : ~mkLit(var) ); | |||
} | |||
} | |||
template<class B, class Solver> | |||
static void parse_DIMACS_main(B& in, Solver& S) { | |||
vec<Lit> lits; | |||
int vars = 0; | |||
int clauses = 0; | |||
int cnt = 0; | |||
for (;;){ | |||
skipWhitespace(in); | |||
if (*in == EOF) break; | |||
else if (*in == 'p'){ | |||
if (eagerMatch(in, "p cnf")){ | |||
vars = parseInt(in); | |||
clauses = parseInt(in); | |||
// SATRACE'06 hack | |||
// if (clauses > 4000000) | |||
// S.eliminate(true); | |||
}else{ | |||
printf("PARSE ERROR! Unexpected char: %c\n", *in), exit(3); | |||
} | |||
} else if (*in == 'c' || *in == 'p') | |||
skipLine(in); | |||
else{ | |||
cnt++; | |||
readClause(in, S, lits); | |||
S.addClause_(lits); } | |||
} | |||
if (vars != S.nVars()) | |||
fprintf(stderr, "WARNING! DIMACS header mismatch: wrong number of variables.\n"); | |||
if (cnt != clauses) | |||
fprintf(stderr, "WARNING! DIMACS header mismatch: wrong number of clauses.\n"); | |||
} | |||
// Inserts problem into solver. | |||
// | |||
template<class Solver> | |||
static void parse_DIMACS(gzFile input_stream, Solver& S) { | |||
StreamBuffer in(input_stream); | |||
parse_DIMACS_main(in, S); } | |||
//================================================================================================= | |||
} | |||
#endif |
@ -0,0 +1,192 @@ | |||
/*****************************************************************************************[Main.cc] | |||
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson | |||
Copyright (c) 2007-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#include <errno.h> | |||
#include <signal.h> | |||
#include <zlib.h> | |||
#include "utils/System.h" | |||
#include "utils/ParseUtils.h" | |||
#include "utils/Options.h" | |||
#include "core/Dimacs.h" | |||
#include "core/Solver.h" | |||
using namespace Minisat; | |||
//================================================================================================= | |||
void printStats(Solver& solver) | |||
{ | |||
double cpu_time = cpuTime(); | |||
double mem_used = memUsedPeak(); | |||
printf("restarts : %"PRIu64"\n", solver.starts); | |||
printf("conflicts : %-12"PRIu64" (%.0f /sec)\n", solver.conflicts , solver.conflicts /cpu_time); | |||
printf("decisions : %-12"PRIu64" (%4.2f %% random) (%.0f /sec)\n", solver.decisions, (float)solver.rnd_decisions*100 / (float)solver.decisions, solver.decisions /cpu_time); | |||
printf("propagations : %-12"PRIu64" (%.0f /sec)\n", solver.propagations, solver.propagations/cpu_time); | |||
printf("conflict literals : %-12"PRIu64" (%4.2f %% deleted)\n", solver.tot_literals, (solver.max_literals - solver.tot_literals)*100 / (double)solver.max_literals); | |||
if (mem_used != 0) printf("Memory used : %.2f MB\n", mem_used); | |||
printf("CPU time : %g s\n", cpu_time); | |||
} | |||
static Solver* solver; | |||
// Terminate by notifying the solver and back out gracefully. This is mainly to have a test-case | |||
// for this feature of the Solver as it may take longer than an immediate call to '_exit()'. | |||
static void SIGINT_interrupt(int signum) { solver->interrupt(); } | |||
// Note that '_exit()' rather than 'exit()' has to be used. The reason is that 'exit()' calls | |||
// destructors and may cause deadlocks if a malloc/free function happens to be running (these | |||
// functions are guarded by locks for multithreaded use). | |||
static void SIGINT_exit(int signum) { | |||
printf("\n"); printf("*** INTERRUPTED ***\n"); | |||
if (solver->verbosity > 0){ | |||
printStats(*solver); | |||
printf("\n"); printf("*** INTERRUPTED ***\n"); } | |||
_exit(1); } | |||
//================================================================================================= | |||
// Main: | |||
int main(int argc, char** argv) | |||
{ | |||
try { | |||
setUsageHelp("USAGE: %s [options] <input-file> <result-output-file>\n\n where input may be either in plain or gzipped DIMACS.\n"); | |||
// printf("This is MiniSat 2.0 beta\n"); | |||
#if defined(__linux__) | |||
fpu_control_t oldcw, newcw; | |||
_FPU_GETCW(oldcw); newcw = (oldcw & ~_FPU_EXTENDED) | _FPU_DOUBLE; _FPU_SETCW(newcw); | |||
printf("WARNING: for repeatability, setting FPU to use double precision\n"); | |||
#endif | |||
// Extra options: | |||
// | |||
IntOption verb ("MAIN", "verb", "Verbosity level (0=silent, 1=some, 2=more).", 1, IntRange(0, 2)); | |||
IntOption cpu_lim("MAIN", "cpu-lim","Limit on CPU time allowed in seconds.\n", INT32_MAX, IntRange(0, INT32_MAX)); | |||
IntOption mem_lim("MAIN", "mem-lim","Limit on memory usage in megabytes.\n", INT32_MAX, IntRange(0, INT32_MAX)); | |||
parseOptions(argc, argv, true); | |||
Solver S; | |||
double initial_time = cpuTime(); | |||
S.verbosity = verb; | |||
solver = &S; | |||
// Use signal handlers that forcibly quit until the solver will be able to respond to | |||
// interrupts: | |||
signal(SIGINT, SIGINT_exit); | |||
signal(SIGXCPU,SIGINT_exit); | |||
// Set limit on CPU-time: | |||
if (cpu_lim != INT32_MAX){ | |||
rlimit rl; | |||
getrlimit(RLIMIT_CPU, &rl); | |||
if (rl.rlim_max == RLIM_INFINITY || (rlim_t)cpu_lim < rl.rlim_max){ | |||
rl.rlim_cur = cpu_lim; | |||
if (setrlimit(RLIMIT_CPU, &rl) == -1) | |||
printf("WARNING! Could not set resource limit: CPU-time.\n"); | |||
} } | |||
// Set limit on virtual memory: | |||
if (mem_lim != INT32_MAX){ | |||
rlim_t new_mem_lim = (rlim_t)mem_lim * 1024*1024; | |||
rlimit rl; | |||
getrlimit(RLIMIT_AS, &rl); | |||
if (rl.rlim_max == RLIM_INFINITY || new_mem_lim < rl.rlim_max){ | |||
rl.rlim_cur = new_mem_lim; | |||
if (setrlimit(RLIMIT_AS, &rl) == -1) | |||
printf("WARNING! Could not set resource limit: Virtual memory.\n"); | |||
} } | |||
if (argc == 1) | |||
printf("Reading from standard input... Use '--help' for help.\n"); | |||
gzFile in = (argc == 1) ? gzdopen(0, "rb") : gzopen(argv[1], "rb"); | |||
if (in == NULL) | |||
printf("ERROR! Could not open file: %s\n", argc == 1 ? "<stdin>" : argv[1]), exit(1); | |||
if (S.verbosity > 0){ | |||
printf("============================[ Problem Statistics ]=============================\n"); | |||
printf("| |\n"); } | |||
parse_DIMACS(in, S); | |||
gzclose(in); | |||
FILE* res = (argc >= 3) ? fopen(argv[2], "wb") : NULL; | |||
if (S.verbosity > 0){ | |||
printf("| Number of variables: %12d |\n", S.nVars()); | |||
printf("| Number of clauses: %12d |\n", S.nClauses()); } | |||
double parsed_time = cpuTime(); | |||
if (S.verbosity > 0){ | |||
printf("| Parse time: %12.2f s |\n", parsed_time - initial_time); | |||
printf("| |\n"); } | |||
// Change to signal-handlers that will only notify the solver and allow it to terminate | |||
// voluntarily: | |||
signal(SIGINT, SIGINT_interrupt); | |||
signal(SIGXCPU,SIGINT_interrupt); | |||
if (!S.simplify()){ | |||
if (res != NULL) fprintf(res, "UNSAT\n"), fclose(res); | |||
if (S.verbosity > 0){ | |||
printf("===============================================================================\n"); | |||
printf("Solved by unit propagation\n"); | |||
printStats(S); | |||
printf("\n"); } | |||
printf("UNSATISFIABLE\n"); | |||
exit(20); | |||
} | |||
vec<Lit> dummy; | |||
lbool ret = S.solveLimited(dummy); | |||
if (S.verbosity > 0){ | |||
printStats(S); | |||
printf("\n"); } | |||
printf(ret == l_True ? "SATISFIABLE\n" : ret == l_False ? "UNSATISFIABLE\n" : "INDETERMINATE\n"); | |||
if (res != NULL){ | |||
if (ret == l_True){ | |||
fprintf(res, "SAT\n"); | |||
for (int i = 0; i < S.nVars(); i++) | |||
if (S.model[i] != l_Undef) | |||
fprintf(res, "%s%s%d", (i==0)?"":" ", (S.model[i]==l_True)?"":"-", i+1); | |||
fprintf(res, " 0\n"); | |||
}else if (ret == l_False) | |||
fprintf(res, "UNSAT\n"); | |||
else | |||
fprintf(res, "INDET\n"); | |||
fclose(res); | |||
} | |||
#ifdef NDEBUG | |||
exit(ret == l_True ? 10 : ret == l_False ? 20 : 0); // (faster than "return", which will invoke the destructor for 'Solver') | |||
#else | |||
return (ret == l_True ? 10 : ret == l_False ? 20 : 0); | |||
#endif | |||
} catch (OutOfMemoryException&){ | |||
printf("===============================================================================\n"); | |||
printf("INDETERMINATE\n"); | |||
exit(0); | |||
} | |||
} |
@ -0,0 +1,4 @@ | |||
EXEC = minisat | |||
DEPDIR = mtl utils | |||
include $(MROOT)/mtl/template.mk |
@ -0,0 +1,923 @@ | |||
/***************************************************************************************[Solver.cc] | |||
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson | |||
Copyright (c) 2007-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#include <math.h> | |||
#include "mtl/Sort.h" | |||
#include "core/Solver.h" | |||
using namespace Minisat; | |||
//================================================================================================= | |||
// Options: | |||
static const char* _cat = "CORE"; | |||
static DoubleOption opt_var_decay (_cat, "var-decay", "The variable activity decay factor", 0.95, DoubleRange(0, false, 1, false)); | |||
static DoubleOption opt_clause_decay (_cat, "cla-decay", "The clause activity decay factor", 0.999, DoubleRange(0, false, 1, false)); | |||
static DoubleOption opt_random_var_freq (_cat, "rnd-freq", "The frequency with which the decision heuristic tries to choose a random variable", 0, DoubleRange(0, true, 1, true)); | |||
static DoubleOption opt_random_seed (_cat, "rnd-seed", "Used by the random variable selection", 91648253, DoubleRange(0, false, HUGE_VAL, false)); | |||
static IntOption opt_ccmin_mode (_cat, "ccmin-mode", "Controls conflict clause minimization (0=none, 1=basic, 2=deep)", 2, IntRange(0, 2)); | |||
static IntOption opt_phase_saving (_cat, "phase-saving", "Controls the level of phase saving (0=none, 1=limited, 2=full)", 2, IntRange(0, 2)); | |||
static BoolOption opt_rnd_init_act (_cat, "rnd-init", "Randomize the initial activity", false); | |||
static BoolOption opt_luby_restart (_cat, "luby", "Use the Luby restart sequence", true); | |||
static IntOption opt_restart_first (_cat, "rfirst", "The base restart interval", 100, IntRange(1, INT32_MAX)); | |||
static DoubleOption opt_restart_inc (_cat, "rinc", "Restart interval increase factor", 2, DoubleRange(1, false, HUGE_VAL, false)); | |||
static DoubleOption opt_garbage_frac (_cat, "gc-frac", "The fraction of wasted memory allowed before a garbage collection is triggered", 0.20, DoubleRange(0, false, HUGE_VAL, false)); | |||
//================================================================================================= | |||
// Constructor/Destructor: | |||
Solver::Solver() : | |||
// Parameters (user settable): | |||
// | |||
verbosity (0) | |||
, var_decay (opt_var_decay) | |||
, clause_decay (opt_clause_decay) | |||
, random_var_freq (opt_random_var_freq) | |||
, random_seed (opt_random_seed) | |||
, luby_restart (opt_luby_restart) | |||
, ccmin_mode (opt_ccmin_mode) | |||
, phase_saving (opt_phase_saving) | |||
, rnd_pol (false) | |||
, rnd_init_act (opt_rnd_init_act) | |||
, garbage_frac (opt_garbage_frac) | |||
, restart_first (opt_restart_first) | |||
, restart_inc (opt_restart_inc) | |||
// Parameters (the rest): | |||
// | |||
, learntsize_factor((double)1/(double)3), learntsize_inc(1.1) | |||
// Parameters (experimental): | |||
// | |||
, learntsize_adjust_start_confl (100) | |||
, learntsize_adjust_inc (1.5) | |||
// Statistics: (formerly in 'SolverStats') | |||
// | |||
, solves(0), starts(0), decisions(0), rnd_decisions(0), propagations(0), conflicts(0) | |||
, dec_vars(0), clauses_literals(0), learnts_literals(0), max_literals(0), tot_literals(0) | |||
, ok (true) | |||
, cla_inc (1) | |||
, var_inc (1) | |||
, watches (WatcherDeleted(ca)) | |||
, qhead (0) | |||
, simpDB_assigns (-1) | |||
, simpDB_props (0) | |||
, order_heap (VarOrderLt(activity)) | |||
, progress_estimate (0) | |||
, remove_satisfied (true) | |||
// Resource constraints: | |||
// | |||
, conflict_budget (-1) | |||
, propagation_budget (-1) | |||
, asynch_interrupt (false) | |||
{} | |||
Solver::~Solver() | |||
{ | |||
} | |||
//================================================================================================= | |||
// Minor methods: | |||
// Creates a new SAT variable in the solver. If 'decision' is cleared, variable will not be | |||
// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result). | |||
// | |||
Var Solver::newVar(bool sign, bool dvar) | |||
{ | |||
int v = nVars(); | |||
watches .init(mkLit(v, false)); | |||
watches .init(mkLit(v, true )); | |||
assigns .push(l_Undef); | |||
vardata .push(mkVarData(CRef_Undef, 0)); | |||
//activity .push(0); | |||
activity .push(rnd_init_act ? drand(random_seed) * 0.00001 : 0); | |||
seen .push(0); | |||
polarity .push(sign); | |||
decision .push(); | |||
trail .capacity(v+1); | |||
setDecisionVar(v, dvar); | |||
return v; | |||
} | |||
bool Solver::addClause_(vec<Lit>& ps) | |||
{ | |||
assert(decisionLevel() == 0); | |||
if (!ok) return false; | |||
// Check if clause is satisfied and remove false/duplicate literals: | |||
sort(ps); | |||
Lit p; int i, j; | |||
for (i = j = 0, p = lit_Undef; i < ps.size(); i++) | |||
if (value(ps[i]) == l_True || ps[i] == ~p) | |||
return true; | |||
else if (value(ps[i]) != l_False && ps[i] != p) | |||
ps[j++] = p = ps[i]; | |||
ps.shrink(i - j); | |||
if (ps.size() == 0) | |||
return ok = false; | |||
else if (ps.size() == 1){ | |||
uncheckedEnqueue(ps[0]); | |||
return ok = (propagate() == CRef_Undef); | |||
}else{ | |||
CRef cr = ca.alloc(ps, false); | |||
clauses.push(cr); | |||
attachClause(cr); | |||
} | |||
return true; | |||
} | |||
void Solver::attachClause(CRef cr) { | |||
const Clause& c = ca[cr]; | |||
assert(c.size() > 1); | |||
watches[~c[0]].push(Watcher(cr, c[1])); | |||
watches[~c[1]].push(Watcher(cr, c[0])); | |||
if (c.learnt()) learnts_literals += c.size(); | |||
else clauses_literals += c.size(); } | |||
void Solver::detachClause(CRef cr, bool strict) { | |||
const Clause& c = ca[cr]; | |||
assert(c.size() > 1); | |||
if (strict){ | |||
remove(watches[~c[0]], Watcher(cr, c[1])); | |||
remove(watches[~c[1]], Watcher(cr, c[0])); | |||
}else{ | |||
// Lazy detaching: (NOTE! Must clean all watcher lists before garbage collecting this clause) | |||
watches.smudge(~c[0]); | |||
watches.smudge(~c[1]); | |||
} | |||
if (c.learnt()) learnts_literals -= c.size(); | |||
else clauses_literals -= c.size(); } | |||
void Solver::removeClause(CRef cr) { | |||
Clause& c = ca[cr]; | |||
detachClause(cr); | |||
// Don't leave pointers to free'd memory! | |||
if (locked(c)) vardata[var(c[0])].reason = CRef_Undef; | |||
c.mark(1); | |||
ca.free(cr); | |||
} | |||
bool Solver::satisfied(const Clause& c) const { | |||
for (int i = 0; i < c.size(); i++) | |||
if (value(c[i]) == l_True) | |||
return true; | |||
return false; } | |||
// Revert to the state at given level (keeping all assignment at 'level' but not beyond). | |||
// | |||
void Solver::cancelUntil(int level) { | |||
if (decisionLevel() > level){ | |||
for (int c = trail.size()-1; c >= trail_lim[level]; c--){ | |||
Var x = var(trail[c]); | |||
assigns [x] = l_Undef; | |||
if (phase_saving > 1 || (phase_saving == 1) && c > trail_lim.last()) | |||
polarity[x] = sign(trail[c]); | |||
insertVarOrder(x); } | |||
qhead = trail_lim[level]; | |||
trail.shrink(trail.size() - trail_lim[level]); | |||
trail_lim.shrink(trail_lim.size() - level); | |||
} } | |||
//================================================================================================= | |||
// Major methods: | |||
Lit Solver::pickBranchLit() | |||
{ | |||
Var next = var_Undef; | |||
// Random decision: | |||
if (drand(random_seed) < random_var_freq && !order_heap.empty()){ | |||
next = order_heap[irand(random_seed,order_heap.size())]; | |||
if (value(next) == l_Undef && decision[next]) | |||
rnd_decisions++; } | |||
// Activity based decision: | |||
while (next == var_Undef || value(next) != l_Undef || !decision[next]) | |||
if (order_heap.empty()){ | |||
next = var_Undef; | |||
break; | |||
}else | |||
next = order_heap.removeMin(); | |||
return next == var_Undef ? lit_Undef : mkLit(next, rnd_pol ? drand(random_seed) < 0.5 : polarity[next]); | |||
} | |||
/*_________________________________________________________________________________________________ | |||
| | |||
| analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&) -> [void] | |||
| | |||
| Description: | |||
| Analyze conflict and produce a reason clause. | |||
| | |||
| Pre-conditions: | |||
| * 'out_learnt' is assumed to be cleared. | |||
| * Current decision level must be greater than root level. | |||
| | |||
| Post-conditions: | |||
| * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'. | |||
| * If out_learnt.size() > 1 then 'out_learnt[1]' has the greatest decision level of the | |||
| rest of literals. There may be others from the same level though. | |||
| | |||
|________________________________________________________________________________________________@*/ | |||
void Solver::analyze(CRef confl, vec<Lit>& out_learnt, int& out_btlevel) | |||
{ | |||
int pathC = 0; | |||
Lit p = lit_Undef; | |||
// Generate conflict clause: | |||
// | |||
out_learnt.push(); // (leave room for the asserting literal) | |||
int index = trail.size() - 1; | |||
do{ | |||
assert(confl != CRef_Undef); // (otherwise should be UIP) | |||
Clause& c = ca[confl]; | |||
if (c.learnt()) | |||
claBumpActivity(c); | |||
for (int j = (p == lit_Undef) ? 0 : 1; j < c.size(); j++){ | |||
Lit q = c[j]; | |||
if (!seen[var(q)] && level(var(q)) > 0){ | |||
varBumpActivity(var(q)); | |||
seen[var(q)] = 1; | |||
if (level(var(q)) >= decisionLevel()) | |||
pathC++; | |||
else | |||
out_learnt.push(q); | |||
} | |||
} | |||
// Select next clause to look at: | |||
while (!seen[var(trail[index--])]); | |||
p = trail[index+1]; | |||
confl = reason(var(p)); | |||
seen[var(p)] = 0; | |||
pathC--; | |||
}while (pathC > 0); | |||
out_learnt[0] = ~p; | |||
// Simplify conflict clause: | |||
// | |||
int i, j; | |||
out_learnt.copyTo(analyze_toclear); | |||
if (ccmin_mode == 2){ | |||
uint32_t abstract_level = 0; | |||
for (i = 1; i < out_learnt.size(); i++) | |||
abstract_level |= abstractLevel(var(out_learnt[i])); // (maintain an abstraction of levels involved in conflict) | |||
for (i = j = 1; i < out_learnt.size(); i++) | |||
if (reason(var(out_learnt[i])) == CRef_Undef || !litRedundant(out_learnt[i], abstract_level)) | |||
out_learnt[j++] = out_learnt[i]; | |||
}else if (ccmin_mode == 1){ | |||
for (i = j = 1; i < out_learnt.size(); i++){ | |||
Var x = var(out_learnt[i]); | |||
if (reason(x) == CRef_Undef) | |||
out_learnt[j++] = out_learnt[i]; | |||
else{ | |||
Clause& c = ca[reason(var(out_learnt[i]))]; | |||
for (int k = 1; k < c.size(); k++) | |||
if (!seen[var(c[k])] && level(var(c[k])) > 0){ | |||
out_learnt[j++] = out_learnt[i]; | |||
break; } | |||
} | |||
} | |||
}else | |||
i = j = out_learnt.size(); | |||
max_literals += out_learnt.size(); | |||
out_learnt.shrink(i - j); | |||
tot_literals += out_learnt.size(); | |||
// Find correct backtrack level: | |||
// | |||
if (out_learnt.size() == 1) | |||
out_btlevel = 0; | |||
else{ | |||
int max_i = 1; | |||
// Find the first literal assigned at the next-highest level: | |||
for (int i = 2; i < out_learnt.size(); i++) | |||
if (level(var(out_learnt[i])) > level(var(out_learnt[max_i]))) | |||
max_i = i; | |||
// Swap-in this literal at index 1: | |||
Lit p = out_learnt[max_i]; | |||
out_learnt[max_i] = out_learnt[1]; | |||
out_learnt[1] = p; | |||
out_btlevel = level(var(p)); | |||
} | |||
for (int j = 0; j < analyze_toclear.size(); j++) seen[var(analyze_toclear[j])] = 0; // ('seen[]' is now cleared) | |||
} | |||
// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is | |||
// visiting literals at levels that cannot be removed later. | |||
bool Solver::litRedundant(Lit p, uint32_t abstract_levels) | |||
{ | |||
analyze_stack.clear(); analyze_stack.push(p); | |||
int top = analyze_toclear.size(); | |||
while (analyze_stack.size() > 0){ | |||
assert(reason(var(analyze_stack.last())) != CRef_Undef); | |||
Clause& c = ca[reason(var(analyze_stack.last()))]; analyze_stack.pop(); | |||
for (int i = 1; i < c.size(); i++){ | |||
Lit p = c[i]; | |||
if (!seen[var(p)] && level(var(p)) > 0){ | |||
if (reason(var(p)) != CRef_Undef && (abstractLevel(var(p)) & abstract_levels) != 0){ | |||
seen[var(p)] = 1; | |||
analyze_stack.push(p); | |||
analyze_toclear.push(p); | |||
}else{ | |||
for (int j = top; j < analyze_toclear.size(); j++) | |||
seen[var(analyze_toclear[j])] = 0; | |||
analyze_toclear.shrink(analyze_toclear.size() - top); | |||
return false; | |||
} | |||
} | |||
} | |||
} | |||
return true; | |||
} | |||
/*_________________________________________________________________________________________________ | |||
| | |||
| analyzeFinal : (p : Lit) -> [void] | |||
| | |||
| Description: | |||
| Specialized analysis procedure to express the final conflict in terms of assumptions. | |||
| Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and | |||
| stores the result in 'out_conflict'. | |||
|________________________________________________________________________________________________@*/ | |||
void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict) | |||
{ | |||
out_conflict.clear(); | |||
out_conflict.push(p); | |||
if (decisionLevel() == 0) | |||
return; | |||
seen[var(p)] = 1; | |||
for (int i = trail.size()-1; i >= trail_lim[0]; i--){ | |||
Var x = var(trail[i]); | |||
if (seen[x]){ | |||
if (reason(x) == CRef_Undef){ | |||
assert(level(x) > 0); | |||
out_conflict.push(~trail[i]); | |||
}else{ | |||
Clause& c = ca[reason(x)]; | |||
for (int j = 1; j < c.size(); j++) | |||
if (level(var(c[j])) > 0) | |||
seen[var(c[j])] = 1; | |||
} | |||
seen[x] = 0; | |||
} | |||
} | |||
seen[var(p)] = 0; | |||
} | |||
void Solver::uncheckedEnqueue(Lit p, CRef from) | |||
{ | |||
assert(value(p) == l_Undef); | |||
assigns[var(p)] = lbool(!sign(p)); | |||
vardata[var(p)] = mkVarData(from, decisionLevel()); | |||
trail.push_(p); | |||
} | |||
/*_________________________________________________________________________________________________ | |||
| | |||
| propagate : [void] -> [Clause*] | |||
| | |||
| Description: | |||
| Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned, | |||
| otherwise CRef_Undef. | |||
| | |||
| Post-conditions: | |||
| * the propagation queue is empty, even if there was a conflict. | |||
|________________________________________________________________________________________________@*/ | |||
CRef Solver::propagate() | |||
{ | |||
CRef confl = CRef_Undef; | |||
int num_props = 0; | |||
watches.cleanAll(); | |||
while (qhead < trail.size()){ | |||
Lit p = trail[qhead++]; // 'p' is enqueued fact to propagate. | |||
vec<Watcher>& ws = watches[p]; | |||
Watcher *i, *j, *end; | |||
num_props++; | |||
for (i = j = (Watcher*)ws, end = i + ws.size(); i != end;){ | |||
// Try to avoid inspecting the clause: | |||
Lit blocker = i->blocker; | |||
if (value(blocker) == l_True){ | |||
*j++ = *i++; continue; } | |||
// Make sure the false literal is data[1]: | |||
CRef cr = i->cref; | |||
Clause& c = ca[cr]; | |||
Lit false_lit = ~p; | |||
if (c[0] == false_lit) | |||
c[0] = c[1], c[1] = false_lit; | |||
assert(c[1] == false_lit); | |||
i++; | |||
// If 0th watch is true, then clause is already satisfied. | |||
Lit first = c[0]; | |||
Watcher w = Watcher(cr, first); | |||
if (first != blocker && value(first) == l_True){ | |||
*j++ = w; continue; } | |||
// Look for new watch: | |||
for (int k = 2; k < c.size(); k++) | |||
if (value(c[k]) != l_False){ | |||
c[1] = c[k]; c[k] = false_lit; | |||
watches[~c[1]].push(w); | |||
goto NextClause; } | |||
// Did not find watch -- clause is unit under assignment: | |||
*j++ = w; | |||
if (value(first) == l_False){ | |||
confl = cr; | |||
qhead = trail.size(); | |||
// Copy the remaining watches: | |||
while (i < end) | |||
*j++ = *i++; | |||
}else | |||
uncheckedEnqueue(first, cr); | |||
NextClause:; | |||
} | |||
ws.shrink(i - j); | |||
} | |||
propagations += num_props; | |||
simpDB_props -= num_props; | |||
return confl; | |||
} | |||
/*_________________________________________________________________________________________________ | |||
| | |||
| reduceDB : () -> [void] | |||
| | |||
| Description: | |||
| Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked | |||
| clauses are clauses that are reason to some assignment. Binary clauses are never removed. | |||
|________________________________________________________________________________________________@*/ | |||
struct reduceDB_lt { | |||
ClauseAllocator& ca; | |||
reduceDB_lt(ClauseAllocator& ca_) : ca(ca_) {} | |||
bool operator () (CRef x, CRef y) { | |||
return ca[x].size() > 2 && (ca[y].size() == 2 || ca[x].activity() < ca[y].activity()); } | |||
}; | |||
void Solver::reduceDB() | |||
{ | |||
int i, j; | |||
double extra_lim = cla_inc / learnts.size(); // Remove any clause below this activity | |||
sort(learnts, reduceDB_lt(ca)); | |||
// Don't delete binary or locked clauses. From the rest, delete clauses from the first half | |||
// and clauses with activity smaller than 'extra_lim': | |||
for (i = j = 0; i < learnts.size(); i++){ | |||
Clause& c = ca[learnts[i]]; | |||
if (c.size() > 2 && !locked(c) && (i < learnts.size() / 2 || c.activity() < extra_lim)) | |||
removeClause(learnts[i]); | |||
else | |||
learnts[j++] = learnts[i]; | |||
} | |||
learnts.shrink(i - j); | |||
checkGarbage(); | |||
} | |||
void Solver::removeSatisfied(vec<CRef>& cs) | |||
{ | |||
int i, j; | |||
for (i = j = 0; i < cs.size(); i++){ | |||
Clause& c = ca[cs[i]]; | |||
if (satisfied(c)) | |||
removeClause(cs[i]); | |||
else | |||
cs[j++] = cs[i]; | |||
} | |||
cs.shrink(i - j); | |||
} | |||
void Solver::rebuildOrderHeap() | |||
{ | |||
vec<Var> vs; | |||
for (Var v = 0; v < nVars(); v++) | |||
if (decision[v] && value(v) == l_Undef) | |||
vs.push(v); | |||
order_heap.build(vs); | |||
} | |||
/*_________________________________________________________________________________________________ | |||
| | |||
| simplify : [void] -> [bool] | |||
| | |||
| Description: | |||
| Simplify the clause database according to the current top-level assigment. Currently, the only | |||
| thing done here is the removal of satisfied clauses, but more things can be put here. | |||
|________________________________________________________________________________________________@*/ | |||
bool Solver::simplify() | |||
{ | |||
assert(decisionLevel() == 0); | |||
if (!ok || propagate() != CRef_Undef) | |||
return ok = false; | |||
if (nAssigns() == simpDB_assigns || (simpDB_props > 0)) | |||
return true; | |||
// Remove satisfied clauses: | |||
removeSatisfied(learnts); | |||
if (remove_satisfied) // Can be turned off. | |||
removeSatisfied(clauses); | |||
checkGarbage(); | |||
rebuildOrderHeap(); | |||
simpDB_assigns = nAssigns(); | |||
simpDB_props = clauses_literals + learnts_literals; // (shouldn't depend on stats really, but it will do for now) | |||
return true; | |||
} | |||
/*_________________________________________________________________________________________________ | |||
| | |||
| search : (nof_conflicts : int) (params : const SearchParams&) -> [lbool] | |||
| | |||
| Description: | |||
| Search for a model the specified number of conflicts. | |||
| NOTE! Use negative value for 'nof_conflicts' indicate infinity. | |||
| | |||
| Output: | |||
| 'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If | |||
| all variables are decision variables, this means that the clause set is satisfiable. 'l_False' | |||
| if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached. | |||
|________________________________________________________________________________________________@*/ | |||
lbool Solver::search(int nof_conflicts) | |||
{ | |||
assert(ok); | |||
int backtrack_level; | |||
int conflictC = 0; | |||
vec<Lit> learnt_clause; | |||
starts++; | |||
for (;;){ | |||
CRef confl = propagate(); | |||
if (confl != CRef_Undef){ | |||
// CONFLICT | |||
conflicts++; conflictC++; | |||
if (decisionLevel() == 0) return l_False; | |||
learnt_clause.clear(); | |||
analyze(confl, learnt_clause, backtrack_level); | |||
cancelUntil(backtrack_level); | |||
if (learnt_clause.size() == 1){ | |||
uncheckedEnqueue(learnt_clause[0]); | |||
}else{ | |||
CRef cr = ca.alloc(learnt_clause, true); | |||
learnts.push(cr); | |||
attachClause(cr); | |||
claBumpActivity(ca[cr]); | |||
uncheckedEnqueue(learnt_clause[0], cr); | |||
} | |||
varDecayActivity(); | |||
claDecayActivity(); | |||
if (--learntsize_adjust_cnt == 0){ | |||
learntsize_adjust_confl *= learntsize_adjust_inc; | |||
learntsize_adjust_cnt = (int)learntsize_adjust_confl; | |||
max_learnts *= learntsize_inc; | |||
if (verbosity >= 1) | |||
printf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n", | |||
(int)conflicts, | |||
(int)dec_vars - (trail_lim.size() == 0 ? trail.size() : trail_lim[0]), nClauses(), (int)clauses_literals, | |||
(int)max_learnts, nLearnts(), (double)learnts_literals/nLearnts(), progressEstimate()*100); | |||
} | |||
}else{ | |||
// NO CONFLICT | |||
if (nof_conflicts >= 0 && conflictC >= nof_conflicts || !withinBudget()){ | |||
// Reached bound on number of conflicts: | |||
progress_estimate = progressEstimate(); | |||
cancelUntil(0); | |||
return l_Undef; } | |||
// Simplify the set of problem clauses: | |||
if (decisionLevel() == 0 && !simplify()) | |||
return l_False; | |||
if (learnts.size()-nAssigns() >= max_learnts) | |||
// Reduce the set of learnt clauses: | |||
reduceDB(); | |||
Lit next = lit_Undef; | |||
while (decisionLevel() < assumptions.size()){ | |||
// Perform user provided assumption: | |||
Lit p = assumptions[decisionLevel()]; | |||
if (value(p) == l_True){ | |||
// Dummy decision level: | |||
newDecisionLevel(); | |||
}else if (value(p) == l_False){ | |||
analyzeFinal(~p, conflict); | |||
return l_False; | |||
}else{ | |||
next = p; | |||
break; | |||
} | |||
} | |||
if (next == lit_Undef){ | |||
// New variable decision: | |||
decisions++; | |||
next = pickBranchLit(); | |||
if (next == lit_Undef) | |||
// Model found: | |||
return l_True; | |||
} | |||
// Increase decision level and enqueue 'next' | |||
newDecisionLevel(); | |||
uncheckedEnqueue(next); | |||
} | |||
} | |||
} | |||
double Solver::progressEstimate() const | |||
{ | |||
double progress = 0; | |||
double F = 1.0 / nVars(); | |||
for (int i = 0; i <= decisionLevel(); i++){ | |||
int beg = i == 0 ? 0 : trail_lim[i - 1]; | |||
int end = i == decisionLevel() ? trail.size() : trail_lim[i]; | |||
progress += pow(F, i) * (end - beg); | |||
} | |||
return progress / nVars(); | |||
} | |||
/* | |||
Finite subsequences of the Luby-sequence: | |||
0: 1 | |||
1: 1 1 2 | |||
2: 1 1 2 1 1 2 4 | |||
3: 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8 | |||
... | |||
*/ | |||
static double luby(double y, int x){ | |||
// Find the finite subsequence that contains index 'x', and the | |||
// size of that subsequence: | |||
int size, seq; | |||
for (size = 1, seq = 0; size < x+1; seq++, size = 2*size+1); | |||
while (size-1 != x){ | |||
size = (size-1)>>1; | |||
seq--; | |||
x = x % size; | |||
} | |||
return pow(y, seq); | |||
} | |||
// NOTE: assumptions passed in member-variable 'assumptions'. | |||
lbool Solver::solve_() | |||
{ | |||
model.clear(); | |||
conflict.clear(); | |||
if (!ok) return l_False; | |||
solves++; | |||
max_learnts = nClauses() * learntsize_factor; | |||
learntsize_adjust_confl = learntsize_adjust_start_confl; | |||
learntsize_adjust_cnt = (int)learntsize_adjust_confl; | |||
lbool status = l_Undef; | |||
if (verbosity >= 1){ | |||
printf("============================[ Search Statistics ]==============================\n"); | |||
printf("| Conflicts | ORIGINAL | LEARNT | Progress |\n"); | |||
printf("| | Vars Clauses Literals | Limit Clauses Lit/Cl | |\n"); | |||
printf("===============================================================================\n"); | |||
} | |||
// Search: | |||
int curr_restarts = 0; | |||
while (status == l_Undef){ | |||
double rest_base = luby_restart ? luby(restart_inc, curr_restarts) : pow(restart_inc, curr_restarts); | |||
status = search(rest_base * restart_first); | |||
if (!withinBudget()) break; | |||
curr_restarts++; | |||
} | |||
if (verbosity >= 1) | |||
printf("===============================================================================\n"); | |||
if (status == l_True){ | |||
// Extend & copy model: | |||
model.growTo(nVars()); | |||
for (int i = 0; i < nVars(); i++) model[i] = value(i); | |||
}else if (status == l_False && conflict.size() == 0) | |||
ok = false; | |||
cancelUntil(0); | |||
return status; | |||
} | |||
//================================================================================================= | |||
// Writing CNF to DIMACS: | |||
// | |||
// FIXME: this needs to be rewritten completely. | |||
static Var mapVar(Var x, vec<Var>& map, Var& max) | |||
{ | |||
if (map.size() <= x || map[x] == -1){ | |||
map.growTo(x+1, -1); | |||
map[x] = max++; | |||
} | |||
return map[x]; | |||
} | |||
void Solver::toDimacs(FILE* f, Clause& c, vec<Var>& map, Var& max) | |||
{ | |||
if (satisfied(c)) return; | |||
for (int i = 0; i < c.size(); i++) | |||
if (value(c[i]) != l_False) | |||
fprintf(f, "%s%d ", sign(c[i]) ? "-" : "", mapVar(var(c[i]), map, max)+1); | |||
fprintf(f, "0\n"); | |||
} | |||
void Solver::toDimacs(const char *file, const vec<Lit>& assumps) | |||
{ | |||
FILE* f = fopen(file, "wr"); | |||
if (f == NULL) | |||
fprintf(stderr, "could not open file %s\n", file), exit(1); | |||
toDimacs(f, assumps); | |||
fclose(f); | |||
} | |||
void Solver::toDimacs(FILE* f, const vec<Lit>& assumps) | |||
{ | |||
// Handle case when solver is in contradictory state: | |||
if (!ok){ | |||
fprintf(f, "p cnf 1 2\n1 0\n-1 0\n"); | |||
return; } | |||
vec<Var> map; Var max = 0; | |||
// Cannot use removeClauses here because it is not safe | |||
// to deallocate them at this point. Could be improved. | |||
int cnt = 0; | |||
for (int i = 0; i < clauses.size(); i++) | |||
if (!satisfied(ca[clauses[i]])) | |||
cnt++; | |||
for (int i = 0; i < clauses.size(); i++) | |||
if (!satisfied(ca[clauses[i]])){ | |||
Clause& c = ca[clauses[i]]; | |||
for (int j = 0; j < c.size(); j++) | |||
if (value(c[j]) != l_False) | |||
mapVar(var(c[j]), map, max); | |||
} | |||
// Assumptions are added as unit clauses: | |||
cnt += assumptions.size(); | |||
fprintf(f, "p cnf %d %d\n", max, cnt); | |||
for (int i = 0; i < assumptions.size(); i++){ | |||
assert(value(assumptions[i]) != l_False); | |||
fprintf(f, "%s%d 0\n", sign(assumptions[i]) ? "-" : "", mapVar(var(assumptions[i]), map, max)+1); | |||
} | |||
for (int i = 0; i < clauses.size(); i++) | |||
toDimacs(f, ca[clauses[i]], map, max); | |||
if (verbosity > 0) | |||
printf("Wrote %d clauses with %d variables.\n", cnt, max); | |||
} | |||
//================================================================================================= | |||
// Garbage Collection methods: | |||
void Solver::relocAll(ClauseAllocator& to) | |||
{ | |||
// All watchers: | |||
// | |||
// for (int i = 0; i < watches.size(); i++) | |||
watches.cleanAll(); | |||
for (int v = 0; v < nVars(); v++) | |||
for (int s = 0; s < 2; s++){ | |||
Lit p = mkLit(v, s); | |||
// printf(" >>> RELOCING: %s%d\n", sign(p)?"-":"", var(p)+1); | |||
vec<Watcher>& ws = watches[p]; | |||
for (int j = 0; j < ws.size(); j++) | |||
ca.reloc(ws[j].cref, to); | |||
} | |||
// All reasons: | |||
// | |||
for (int i = 0; i < trail.size(); i++){ | |||
Var v = var(trail[i]); | |||
if (reason(v) != CRef_Undef && (ca[reason(v)].reloced() || locked(ca[reason(v)]))) | |||
ca.reloc(vardata[v].reason, to); | |||
} | |||
// All learnt: | |||
// | |||
for (int i = 0; i < learnts.size(); i++) | |||
ca.reloc(learnts[i], to); | |||
// All original: | |||
// | |||
for (int i = 0; i < clauses.size(); i++) | |||
ca.reloc(clauses[i], to); | |||
} | |||
void Solver::garbageCollect() | |||
{ | |||
// Initialize the next region to a size corresponding to the estimated utilization degree. This | |||
// is not precise but should avoid some unnecessary reallocations for the new region: | |||
ClauseAllocator to(ca.size() - ca.wasted()); | |||
relocAll(to); | |||
if (verbosity >= 2) | |||
printf("| Garbage collection: %12d bytes => %12d bytes |\n", | |||
ca.size()*ClauseAllocator::Unit_Size, to.size()*ClauseAllocator::Unit_Size); | |||
to.moveTo(ca); | |||
} |
@ -0,0 +1,373 @@ | |||
/****************************************************************************************[Solver.h] | |||
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson | |||
Copyright (c) 2007-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#ifndef Minisat_Solver_h | |||
#define Minisat_Solver_h | |||
#include "mtl/Vec.h" | |||
#include "mtl/Heap.h" | |||
#include "mtl/Alg.h" | |||
#include "utils/Options.h" | |||
#include "core/SolverTypes.h" | |||
namespace Minisat { | |||
//================================================================================================= | |||
// Solver -- the main class: | |||
class Solver { | |||
public: | |||
// Constructor/Destructor: | |||
// | |||
Solver(); | |||
virtual ~Solver(); | |||
// Problem specification: | |||
// | |||
Var newVar (bool polarity = true, bool dvar = true); // Add a new variable with parameters specifying variable mode. | |||
bool addClause (const vec<Lit>& ps); // Add a clause to the solver. | |||
bool addEmptyClause(); // Add the empty clause, making the solver contradictory. | |||
bool addClause (Lit p); // Add a unit clause to the solver. | |||
bool addClause (Lit p, Lit q); // Add a binary clause to the solver. | |||
bool addClause (Lit p, Lit q, Lit r); // Add a ternary clause to the solver. | |||
bool addClause_( vec<Lit>& ps); // Add a clause to the solver without making superflous internal copy. Will | |||
// change the passed vector 'ps'. | |||
// Solving: | |||
// | |||
bool simplify (); // Removes already satisfied clauses. | |||
bool solve (const vec<Lit>& assumps); // Search for a model that respects a given set of assumptions. | |||
lbool solveLimited (const vec<Lit>& assumps); // Search for a model that respects a given set of assumptions (With resource constraints). | |||
bool solve (); // Search without assumptions. | |||
bool solve (Lit p); // Search for a model that respects a single assumption. | |||
bool solve (Lit p, Lit q); // Search for a model that respects two assumptions. | |||
bool solve (Lit p, Lit q, Lit r); // Search for a model that respects three assumptions. | |||
bool okay () const; // FALSE means solver is in a conflicting state | |||
void toDimacs (FILE* f, const vec<Lit>& assumps); // Write CNF to file in DIMACS-format. | |||
void toDimacs (const char *file, const vec<Lit>& assumps); | |||
void toDimacs (FILE* f, Clause& c, vec<Var>& map, Var& max); | |||
// Convenience versions of 'toDimacs()': | |||
void toDimacs (const char* file); | |||
void toDimacs (const char* file, Lit p); | |||
void toDimacs (const char* file, Lit p, Lit q); | |||
void toDimacs (const char* file, Lit p, Lit q, Lit r); | |||
// Variable mode: | |||
// | |||
void setPolarity (Var v, bool b); // Declare which polarity the decision heuristic should use for a variable. Requires mode 'polarity_user'. | |||
void setDecisionVar (Var v, bool b); // Declare if a variable should be eligible for selection in the decision heuristic. | |||
// Read state: | |||
// | |||
lbool value (Var x) const; // The current value of a variable. | |||
lbool value (Lit p) const; // The current value of a literal. | |||
lbool modelValue (Var x) const; // The value of a variable in the last model. The last call to solve must have been satisfiable. | |||
lbool modelValue (Lit p) const; // The value of a literal in the last model. The last call to solve must have been satisfiable. | |||
int nAssigns () const; // The current number of assigned literals. | |||
int nClauses () const; // The current number of original clauses. | |||
int nLearnts () const; // The current number of learnt clauses. | |||
int nVars () const; // The current number of variables. | |||
int nFreeVars () const; | |||
// Resource contraints: | |||
// | |||
void setConfBudget(int64_t x); | |||
void setPropBudget(int64_t x); | |||
void budgetOff(); | |||
void interrupt(); // Trigger a (potentially asynchronous) interruption of the solver. | |||
void clearInterrupt(); // Clear interrupt indicator flag. | |||
// Memory managment: | |||
// | |||
virtual void garbageCollect(); | |||
void checkGarbage(double gf); | |||
void checkGarbage(); | |||
// Extra results: (read-only member variable) | |||
// | |||
vec<lbool> model; // If problem is satisfiable, this vector contains the model (if any). | |||
vec<Lit> conflict; // If problem is unsatisfiable (possibly under assumptions), | |||
// this vector represent the final conflict clause expressed in the assumptions. | |||
// Mode of operation: | |||
// | |||
int verbosity; | |||
double var_decay; | |||
double clause_decay; | |||
double random_var_freq; | |||
double random_seed; | |||
bool luby_restart; | |||
int ccmin_mode; // Controls conflict clause minimization (0=none, 1=basic, 2=deep). | |||
int phase_saving; // Controls the level of phase saving (0=none, 1=limited, 2=full). | |||
bool rnd_pol; // Use random polarities for branching heuristics. | |||
bool rnd_init_act; // Initialize variable activities with a small random value. | |||
double garbage_frac; // The fraction of wasted memory allowed before a garbage collection is triggered. | |||
int restart_first; // The initial restart limit. (default 100) | |||
double restart_inc; // The factor with which the restart limit is multiplied in each restart. (default 1.5) | |||
double learntsize_factor; // The intitial limit for learnt clauses is a factor of the original clauses. (default 1 / 3) | |||
double learntsize_inc; // The limit for learnt clauses is multiplied with this factor each restart. (default 1.1) | |||
int learntsize_adjust_start_confl; | |||
double learntsize_adjust_inc; | |||
// Statistics: (read-only member variable) | |||
// | |||
uint64_t solves, starts, decisions, rnd_decisions, propagations, conflicts; | |||
uint64_t dec_vars, clauses_literals, learnts_literals, max_literals, tot_literals; | |||
protected: | |||
// Helper structures: | |||
// | |||
struct VarData { CRef reason; int level; }; | |||
static inline VarData mkVarData(CRef cr, int l){ VarData d = {cr, l}; return d; } | |||
struct Watcher { | |||
CRef cref; | |||
Lit blocker; | |||
Watcher(CRef cr, Lit p) : cref(cr), blocker(p) {} | |||
bool operator==(const Watcher& w) const { return cref == w.cref; } | |||
bool operator!=(const Watcher& w) const { return cref != w.cref; } | |||
}; | |||
struct WatcherDeleted | |||
{ | |||
const ClauseAllocator& ca; | |||
WatcherDeleted(const ClauseAllocator& _ca) : ca(_ca) {} | |||
bool operator()(const Watcher& w) const { return ca[w.cref].mark() == 1; } | |||
}; | |||
struct VarOrderLt { | |||
const vec<double>& activity; | |||
bool operator () (Var x, Var y) const { return activity[x] > activity[y]; } | |||
VarOrderLt(const vec<double>& act) : activity(act) { } | |||
}; | |||
// Solver state: | |||
// | |||
bool ok; // If FALSE, the constraints are already unsatisfiable. No part of the solver state may be used! | |||
vec<CRef> clauses; // List of problem clauses. | |||
vec<CRef> learnts; // List of learnt clauses. | |||
double cla_inc; // Amount to bump next clause with. | |||
vec<double> activity; // A heuristic measurement of the activity of a variable. | |||
double var_inc; // Amount to bump next variable with. | |||
OccLists<Lit, vec<Watcher>, WatcherDeleted> | |||
watches; // 'watches[lit]' is a list of constraints watching 'lit' (will go there if literal becomes true). | |||
vec<lbool> assigns; // The current assignments. | |||
vec<char> polarity; // The preferred polarity of each variable. | |||
vec<char> decision; // Declares if a variable is eligible for selection in the decision heuristic. | |||
vec<Lit> trail; // Assignment stack; stores all assigments made in the order they were made. | |||
vec<int> trail_lim; // Separator indices for different decision levels in 'trail'. | |||
vec<VarData> vardata; // Stores reason and level for each variable. | |||
int qhead; // Head of queue (as index into the trail -- no more explicit propagation queue in MiniSat). | |||
int simpDB_assigns; // Number of top-level assignments since last execution of 'simplify()'. | |||
int64_t simpDB_props; // Remaining number of propagations that must be made before next execution of 'simplify()'. | |||
vec<Lit> assumptions; // Current set of assumptions provided to solve by the user. | |||
Heap<VarOrderLt> order_heap; // A priority queue of variables ordered with respect to the variable activity. | |||
double progress_estimate;// Set by 'search()'. | |||
bool remove_satisfied; // Indicates whether possibly inefficient linear scan for satisfied clauses should be performed in 'simplify'. | |||
ClauseAllocator ca; | |||
// Temporaries (to reduce allocation overhead). Each variable is prefixed by the method in which it is | |||
// used, exept 'seen' wich is used in several places. | |||
// | |||
vec<char> seen; | |||
vec<Lit> analyze_stack; | |||
vec<Lit> analyze_toclear; | |||
vec<Lit> add_tmp; | |||
double max_learnts; | |||
double learntsize_adjust_confl; | |||
int learntsize_adjust_cnt; | |||
// Resource contraints: | |||
// | |||
int64_t conflict_budget; // -1 means no budget. | |||
int64_t propagation_budget; // -1 means no budget. | |||
bool asynch_interrupt; | |||
// Main internal methods: | |||
// | |||
void insertVarOrder (Var x); // Insert a variable in the decision order priority queue. | |||
Lit pickBranchLit (); // Return the next decision variable. | |||
void newDecisionLevel (); // Begins a new decision level. | |||
void uncheckedEnqueue (Lit p, CRef from = CRef_Undef); // Enqueue a literal. Assumes value of literal is undefined. | |||
bool enqueue (Lit p, CRef from = CRef_Undef); // Test if fact 'p' contradicts current state, enqueue otherwise. | |||
CRef propagate (); // Perform unit propagation. Returns possibly conflicting clause. | |||
void cancelUntil (int level); // Backtrack until a certain level. | |||
void analyze (CRef confl, vec<Lit>& out_learnt, int& out_btlevel); // (bt = backtrack) | |||
void analyzeFinal (Lit p, vec<Lit>& out_conflict); // COULD THIS BE IMPLEMENTED BY THE ORDINARIY "analyze" BY SOME REASONABLE GENERALIZATION? | |||
bool litRedundant (Lit p, uint32_t abstract_levels); // (helper method for 'analyze()') | |||
lbool search (int nof_conflicts); // Search for a given number of conflicts. | |||
lbool solve_ (); // Main solve method (assumptions given in 'assumptions'). | |||
void reduceDB (); // Reduce the set of learnt clauses. | |||
void removeSatisfied (vec<CRef>& cs); // Shrink 'cs' to contain only non-satisfied clauses. | |||
void rebuildOrderHeap (); | |||
// Maintaining Variable/Clause activity: | |||
// | |||
void varDecayActivity (); // Decay all variables with the specified factor. Implemented by increasing the 'bump' value instead. | |||
void varBumpActivity (Var v, double inc); // Increase a variable with the current 'bump' value. | |||
void varBumpActivity (Var v); // Increase a variable with the current 'bump' value. | |||
void claDecayActivity (); // Decay all clauses with the specified factor. Implemented by increasing the 'bump' value instead. | |||
void claBumpActivity (Clause& c); // Increase a clause with the current 'bump' value. | |||
// Operations on clauses: | |||
// | |||
void attachClause (CRef cr); // Attach a clause to watcher lists. | |||
void detachClause (CRef cr, bool strict = false); // Detach a clause to watcher lists. | |||
void removeClause (CRef cr); // Detach and free a clause. | |||
bool locked (const Clause& c) const; // Returns TRUE if a clause is a reason for some implication in the current state. | |||
bool satisfied (const Clause& c) const; // Returns TRUE if a clause is satisfied in the current state. | |||
void relocAll (ClauseAllocator& to); | |||
// Misc: | |||
// | |||
int decisionLevel () const; // Gives the current decisionlevel. | |||
uint32_t abstractLevel (Var x) const; // Used to represent an abstraction of sets of decision levels. | |||
CRef reason (Var x) const; | |||
int level (Var x) const; | |||
double progressEstimate () const; // DELETE THIS ?? IT'S NOT VERY USEFUL ... | |||
bool withinBudget () const; | |||
// Static helpers: | |||
// | |||
// Returns a random float 0 <= x < 1. Seed must never be 0. | |||
static inline double drand(double& seed) { | |||
seed *= 1389796; | |||
int q = (int)(seed / 2147483647); | |||
seed -= (double)q * 2147483647; | |||
return seed / 2147483647; } | |||
// Returns a random integer 0 <= x < size. Seed must never be 0. | |||
static inline int irand(double& seed, int size) { | |||
return (int)(drand(seed) * size); } | |||
}; | |||
//================================================================================================= | |||
// Implementation of inline methods: | |||
inline CRef Solver::reason(Var x) const { return vardata[x].reason; } | |||
inline int Solver::level (Var x) const { return vardata[x].level; } | |||
inline void Solver::insertVarOrder(Var x) { | |||
if (!order_heap.inHeap(x) && decision[x]) order_heap.insert(x); } | |||
inline void Solver::varDecayActivity() { var_inc *= (1 / var_decay); } | |||
inline void Solver::varBumpActivity(Var v) { varBumpActivity(v, var_inc); } | |||
inline void Solver::varBumpActivity(Var v, double inc) { | |||
if ( (activity[v] += inc) > 1e100 ) { | |||
// Rescale: | |||
for (int i = 0; i < nVars(); i++) | |||
activity[i] *= 1e-100; | |||
var_inc *= 1e-100; } | |||
// Update order_heap with respect to new activity: | |||
if (order_heap.inHeap(v)) | |||
order_heap.decrease(v); } | |||
inline void Solver::claDecayActivity() { cla_inc *= (1 / clause_decay); } | |||
inline void Solver::claBumpActivity (Clause& c) { | |||
if ( (c.activity() += cla_inc) > 1e20 ) { | |||
// Rescale: | |||
for (int i = 0; i < learnts.size(); i++) | |||
ca[learnts[i]].activity() *= 1e-20; | |||
cla_inc *= 1e-20; } } | |||
inline void Solver::checkGarbage(void){ return checkGarbage(garbage_frac); } | |||
inline void Solver::checkGarbage(double gf){ | |||
if (ca.wasted() > ca.size() * gf) | |||
garbageCollect(); } | |||
// NOTE: enqueue does not set the ok flag! (only public methods do) | |||
inline bool Solver::enqueue (Lit p, CRef from) { return value(p) != l_Undef ? value(p) != l_False : (uncheckedEnqueue(p, from), true); } | |||
inline bool Solver::addClause (const vec<Lit>& ps) { ps.copyTo(add_tmp); return addClause_(add_tmp); } | |||
inline bool Solver::addEmptyClause () { add_tmp.clear(); return addClause_(add_tmp); } | |||
inline bool Solver::addClause (Lit p) { add_tmp.clear(); add_tmp.push(p); return addClause_(add_tmp); } | |||
inline bool Solver::addClause (Lit p, Lit q) { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); return addClause_(add_tmp); } | |||
inline bool Solver::addClause (Lit p, Lit q, Lit r) { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); add_tmp.push(r); return addClause_(add_tmp); } | |||
inline bool Solver::locked (const Clause& c) const { return value(c[0]) == l_True && reason(var(c[0])) != CRef_Undef && ca.lea(reason(var(c[0]))) == &c; } | |||
inline void Solver::newDecisionLevel() { trail_lim.push(trail.size()); } | |||
inline int Solver::decisionLevel () const { return trail_lim.size(); } | |||
inline uint32_t Solver::abstractLevel (Var x) const { return 1 << (level(x) & 31); } | |||
inline lbool Solver::value (Var x) const { return assigns[x]; } | |||
inline lbool Solver::value (Lit p) const { return assigns[var(p)] ^ sign(p); } | |||
inline lbool Solver::modelValue (Var x) const { return model[x]; } | |||
inline lbool Solver::modelValue (Lit p) const { return model[var(p)] ^ sign(p); } | |||
inline int Solver::nAssigns () const { return trail.size(); } | |||
inline int Solver::nClauses () const { return clauses.size(); } | |||
inline int Solver::nLearnts () const { return learnts.size(); } | |||
inline int Solver::nVars () const { return vardata.size(); } | |||
inline int Solver::nFreeVars () const { return (int)dec_vars - (trail_lim.size() == 0 ? trail.size() : trail_lim[0]); } | |||
inline void Solver::setPolarity (Var v, bool b) { polarity[v] = b; } | |||
inline void Solver::setDecisionVar(Var v, bool b) | |||
{ | |||
if ( b && !decision[v]) dec_vars++; | |||
else if (!b && decision[v]) dec_vars--; | |||
decision[v] = b; | |||
insertVarOrder(v); | |||
} | |||
inline void Solver::setConfBudget(int64_t x){ conflict_budget = conflicts + x; } | |||
inline void Solver::setPropBudget(int64_t x){ propagation_budget = propagations + x; } | |||
inline void Solver::interrupt(){ asynch_interrupt = true; } | |||
inline void Solver::clearInterrupt(){ asynch_interrupt = false; } | |||
inline void Solver::budgetOff(){ conflict_budget = propagation_budget = -1; } | |||
inline bool Solver::withinBudget() const { | |||
return !asynch_interrupt && | |||
(conflict_budget < 0 || conflicts < (uint64_t)conflict_budget) && | |||
(propagation_budget < 0 || propagations < (uint64_t)propagation_budget); } | |||
// FIXME: after the introduction of asynchronous interrruptions the solve-versions that return a | |||
// pure bool do not give a safe interface. Either interrupts must be possible to turn off here, or | |||
// all calls to solve must return an 'lbool'. I'm not yet sure which I prefer. | |||
inline bool Solver::solve () { budgetOff(); assumptions.clear(); return solve_() == l_True; } | |||
inline bool Solver::solve (Lit p) { budgetOff(); assumptions.clear(); assumptions.push(p); return solve_() == l_True; } | |||
inline bool Solver::solve (Lit p, Lit q) { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); return solve_() == l_True; } | |||
inline bool Solver::solve (Lit p, Lit q, Lit r) { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); assumptions.push(r); return solve_() == l_True; } | |||
inline bool Solver::solve (const vec<Lit>& assumps){ budgetOff(); assumps.copyTo(assumptions); return solve_() == l_True; } | |||
inline lbool Solver::solveLimited (const vec<Lit>& assumps){ assumps.copyTo(assumptions); return solve_(); } | |||
inline bool Solver::okay () const { return ok; } | |||
inline void Solver::toDimacs (const char* file){ vec<Lit> as; toDimacs(file, as); } | |||
inline void Solver::toDimacs (const char* file, Lit p){ vec<Lit> as; as.push(p); toDimacs(file, as); } | |||
inline void Solver::toDimacs (const char* file, Lit p, Lit q){ vec<Lit> as; as.push(p); as.push(q); toDimacs(file, as); } | |||
inline void Solver::toDimacs (const char* file, Lit p, Lit q, Lit r){ vec<Lit> as; as.push(p); as.push(q); as.push(r); toDimacs(file, as); } | |||
//================================================================================================= | |||
// Debug etc: | |||
//================================================================================================= | |||
} | |||
#endif |
@ -0,0 +1,407 @@ | |||
/***********************************************************************************[SolverTypes.h] | |||
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson | |||
Copyright (c) 2007-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#ifndef Minisat_SolverTypes_h | |||
#define Minisat_SolverTypes_h | |||
#include <assert.h> | |||
#include "mtl/IntTypes.h" | |||
#include "mtl/Alg.h" | |||
#include "mtl/Vec.h" | |||
#include "mtl/Map.h" | |||
#include "mtl/Alloc.h" | |||
namespace Minisat { | |||
//================================================================================================= | |||
// Variables, literals, lifted booleans, clauses: | |||
// NOTE! Variables are just integers. No abstraction here. They should be chosen from 0..N, | |||
// so that they can be used as array indices. | |||
typedef int Var; | |||
#define var_Undef (-1) | |||
struct Lit { | |||
int x; | |||
// Use this as a constructor: | |||
friend Lit mkLit(Var var, bool sign = false); | |||
bool operator == (Lit p) const { return x == p.x; } | |||
bool operator != (Lit p) const { return x != p.x; } | |||
bool operator < (Lit p) const { return x < p.x; } // '<' makes p, ~p adjacent in the ordering. | |||
}; | |||
inline Lit mkLit (Var var, bool sign) { Lit p; p.x = var + var + (int)sign; return p; } | |||
inline Lit operator ~(Lit p) { Lit q; q.x = p.x ^ 1; return q; } | |||
inline Lit operator ^(Lit p, bool b) { Lit q; q.x = p.x ^ (unsigned int)b; return q; } | |||
inline bool sign (Lit p) { return p.x & 1; } | |||
inline int var (Lit p) { return p.x >> 1; } | |||
// Mapping Literals to and from compact integers suitable for array indexing: | |||
inline int toInt (Var v) { return v; } | |||
inline int toInt (Lit p) { return p.x; } | |||
inline Lit toLit (int i) { Lit p; p.x = i; return p; } | |||
//const Lit lit_Undef = mkLit(var_Undef, false); // }- Useful special constants. | |||
//const Lit lit_Error = mkLit(var_Undef, true ); // } | |||
const Lit lit_Undef = { -2 }; // }- Useful special constants. | |||
const Lit lit_Error = { -1 }; // } | |||
//================================================================================================= | |||
// Lifted booleans: | |||
// | |||
// NOTE: this implementation is optimized for the case when comparisons between values are mostly | |||
// between one variable and one constant. Some care had to be taken to make sure that gcc | |||
// does enough constant propagation to produce sensible code, and this appears to be somewhat | |||
// fragile unfortunately. | |||
#define l_True (lbool((uint8_t)0)) // gcc does not do constant propagation if these are real constants. | |||
#define l_False (lbool((uint8_t)1)) | |||
#define l_Undef (lbool((uint8_t)2)) | |||
class lbool { | |||
uint8_t value; | |||
public: | |||
explicit lbool(uint8_t v) : value(v) { } | |||
lbool() : value(0) { } | |||
explicit lbool(bool x) : value(!x) { } | |||
bool operator == (lbool b) const { return ((b.value&2) & (value&2)) | (!(b.value&2)&(value == b.value)); } | |||
bool operator != (lbool b) const { return !(*this == b); } | |||
lbool operator ^ (bool b) const { return lbool((uint8_t)(value^(uint8_t)b)); } | |||
lbool operator && (lbool b) const { | |||
uint8_t sel = (this->value << 1) | (b.value << 3); | |||
uint8_t v = (0xF7F755F4 >> sel) & 3; | |||
return lbool(v); } | |||
lbool operator || (lbool b) const { | |||
uint8_t sel = (this->value << 1) | (b.value << 3); | |||
uint8_t v = (0xFCFCF400 >> sel) & 3; | |||
return lbool(v); } | |||
friend int toInt (lbool l); | |||
friend lbool toLbool(int v); | |||
}; | |||
inline int toInt (lbool l) { return l.value; } | |||
inline lbool toLbool(int v) { return lbool((uint8_t)v); } | |||
//================================================================================================= | |||
// Clause -- a simple class for representing a clause: | |||
class Clause; | |||
typedef RegionAllocator<uint32_t>::Ref CRef; | |||
class Clause { | |||
struct { | |||
unsigned mark : 2; | |||
unsigned learnt : 1; | |||
unsigned has_extra : 1; | |||
unsigned reloced : 1; | |||
unsigned size : 27; } header; | |||
union { Lit lit; float act; uint32_t abs; CRef rel; } data[0]; | |||
friend class ClauseAllocator; | |||
// NOTE: This constructor cannot be used directly (doesn't allocate enough memory). | |||
template<class V> | |||
Clause(const V& ps, bool use_extra, bool learnt) { | |||
header.mark = 0; | |||
header.learnt = learnt; | |||
header.has_extra = use_extra; | |||
header.reloced = 0; | |||
header.size = ps.size(); | |||
for (int i = 0; i < ps.size(); i++) | |||
data[i].lit = ps[i]; | |||
if (header.has_extra){ | |||
if (header.learnt) | |||
data[header.size].act = 0; | |||
else | |||
calcAbstraction(); } | |||
} | |||
public: | |||
void calcAbstraction() { | |||
assert(header.has_extra); | |||
uint32_t abstraction = 0; | |||
for (int i = 0; i < size(); i++) | |||
abstraction |= 1 << (var(data[i].lit) & 31); | |||
data[header.size].abs = abstraction; } | |||
int size () const { return header.size; } | |||
void shrink (int i) { assert(i <= size()); if (header.has_extra) data[header.size-i] = data[header.size]; header.size -= i; } | |||
void pop () { shrink(1); } | |||
bool learnt () const { return header.learnt; } | |||
bool has_extra () const { return header.has_extra; } | |||
uint32_t mark () const { return header.mark; } | |||
void mark (uint32_t m) { header.mark = m; } | |||
const Lit& last () const { return data[header.size-1].lit; } | |||
bool reloced () const { return header.reloced; } | |||
CRef relocation () const { return data[0].rel; } | |||
void relocate (CRef c) { header.reloced = 1; data[0].rel = c; } | |||
// NOTE: somewhat unsafe to change the clause in-place! Must manually call 'calcAbstraction' afterwards for | |||
// subsumption operations to behave correctly. | |||
Lit& operator [] (int i) { return data[i].lit; } | |||
Lit operator [] (int i) const { return data[i].lit; } | |||
operator const Lit* (void) const { return (Lit*)data; } | |||
float& activity () { assert(header.has_extra); return data[header.size].act; } | |||
uint32_t abstraction () const { assert(header.has_extra); return data[header.size].abs; } | |||
Lit subsumes (const Clause& other) const; | |||
void strengthen (Lit p); | |||
}; | |||
//================================================================================================= | |||
// ClauseAllocator -- a simple class for allocating memory for clauses: | |||
const CRef CRef_Undef = RegionAllocator<uint32_t>::Ref_Undef; | |||
class ClauseAllocator : public RegionAllocator<uint32_t> | |||
{ | |||
static int clauseWord32Size(int size, bool has_extra){ | |||
return (sizeof(Clause) + (sizeof(Lit) * (size + (int)has_extra))) / sizeof(uint32_t); } | |||
public: | |||
bool extra_clause_field; | |||
ClauseAllocator(uint32_t start_cap) : RegionAllocator<uint32_t>(start_cap), extra_clause_field(false){} | |||
ClauseAllocator() : extra_clause_field(false){} | |||
void moveTo(ClauseAllocator& to){ | |||
to.extra_clause_field = extra_clause_field; | |||
RegionAllocator<uint32_t>::moveTo(to); } | |||
template<class Lits> | |||
CRef alloc(const Lits& ps, bool learnt = false) | |||
{ | |||
assert(sizeof(Lit) == sizeof(uint32_t)); | |||
assert(sizeof(float) == sizeof(uint32_t)); | |||
bool use_extra = learnt | extra_clause_field; | |||
CRef cid = RegionAllocator<uint32_t>::alloc(clauseWord32Size(ps.size(), use_extra)); | |||
new (lea(cid)) Clause(ps, use_extra, learnt); | |||
return cid; | |||
} | |||
// Deref, Load Effective Address (LEA), Inverse of LEA (AEL): | |||
Clause& operator[](Ref r) { return (Clause&)RegionAllocator<uint32_t>::operator[](r); } | |||
const Clause& operator[](Ref r) const { return (Clause&)RegionAllocator<uint32_t>::operator[](r); } | |||
Clause* lea (Ref r) { return (Clause*)RegionAllocator<uint32_t>::lea(r); } | |||
const Clause* lea (Ref r) const { return (Clause*)RegionAllocator<uint32_t>::lea(r); } | |||
Ref ael (const Clause* t){ return RegionAllocator<uint32_t>::ael((uint32_t*)t); } | |||
void free(CRef cid) | |||
{ | |||
Clause& c = operator[](cid); | |||
RegionAllocator<uint32_t>::free(clauseWord32Size(c.size(), c.has_extra())); | |||
} | |||
void reloc(CRef& cr, ClauseAllocator& to) | |||
{ | |||
Clause& c = operator[](cr); | |||
if (c.reloced()) { cr = c.relocation(); return; } | |||
cr = to.alloc(c, c.learnt()); | |||
c.relocate(cr); | |||
// Copy extra data-fields: | |||
// (This could be cleaned-up. Generalize Clause-constructor to be applicable here instead?) | |||
to[cr].mark(c.mark()); | |||
if (to[cr].learnt()) to[cr].activity() = c.activity(); | |||
else if (to[cr].has_extra()) to[cr].calcAbstraction(); | |||
} | |||
}; | |||
//================================================================================================= | |||
// OccLists -- a class for maintaining occurence lists with lazy deletion: | |||
template<class Idx, class Vec, class Deleted> | |||
class OccLists | |||
{ | |||
vec<Vec> occs; | |||
vec<char> dirty; | |||
vec<Idx> dirties; | |||
Deleted deleted; | |||
public: | |||
OccLists(const Deleted& d) : deleted(d) {} | |||
void init (const Idx& idx){ occs.growTo(toInt(idx)+1); dirty.growTo(toInt(idx)+1, 0); } | |||
// Vec& operator[](const Idx& idx){ return occs[toInt(idx)]; } | |||
Vec& operator[](const Idx& idx){ return occs[toInt(idx)]; } | |||
Vec& lookup (const Idx& idx){ if (dirty[toInt(idx)]) clean(idx); return occs[toInt(idx)]; } | |||
void cleanAll (); | |||
void clean (const Idx& idx); | |||
void smudge (const Idx& idx){ | |||
if (dirty[toInt(idx)] == 0){ | |||
dirty[toInt(idx)] = 1; | |||
dirties.push(idx); | |||
} | |||
} | |||
void clear(bool free = true){ | |||
occs .clear(free); | |||
dirty .clear(free); | |||
dirties.clear(free); | |||
} | |||
}; | |||
template<class Idx, class Vec, class Deleted> | |||
void OccLists<Idx,Vec,Deleted>::cleanAll() | |||
{ | |||
for (int i = 0; i < dirties.size(); i++) | |||
// Dirties may contain duplicates so check here if a variable is already cleaned: | |||
if (dirty[toInt(dirties[i])]) | |||
clean(dirties[i]); | |||
dirties.clear(); | |||
} | |||
template<class Idx, class Vec, class Deleted> | |||
void OccLists<Idx,Vec,Deleted>::clean(const Idx& idx) | |||
{ | |||
Vec& vec = occs[toInt(idx)]; | |||
int i, j; | |||
for (i = j = 0; i < vec.size(); i++) | |||
if (!deleted(vec[i])) | |||
vec[j++] = vec[i]; | |||
vec.shrink(i - j); | |||
dirty[toInt(idx)] = 0; | |||
} | |||
//================================================================================================= | |||
// CMap -- a class for mapping clauses to values: | |||
template<class T> | |||
class CMap | |||
{ | |||
struct CRefHash { | |||
uint32_t operator()(CRef cr) const { return (uint32_t)cr; } }; | |||
typedef Map<CRef, T, CRefHash> HashTable; | |||
HashTable map; | |||
public: | |||
// Size-operations: | |||
void clear () { map.clear(); } | |||
int size () const { return map.elems(); } | |||
// Insert/Remove/Test mapping: | |||
void insert (CRef cr, const T& t){ map.insert(cr, t); } | |||
void growTo (CRef cr, const T& t){ map.insert(cr, t); } // NOTE: for compatibility | |||
void remove (CRef cr) { map.remove(cr); } | |||
bool has (CRef cr, T& t) { return map.peek(cr, t); } | |||
// Vector interface (the clause 'c' must already exist): | |||
const T& operator [] (CRef cr) const { return map[cr]; } | |||
T& operator [] (CRef cr) { return map[cr]; } | |||
// Iteration (not transparent at all at the moment): | |||
int bucket_count() const { return map.bucket_count(); } | |||
const vec<typename HashTable::Pair>& bucket(int i) const { return map.bucket(i); } | |||
// Move contents to other map: | |||
void moveTo(CMap& other){ map.moveTo(other.map); } | |||
// TMP debug: | |||
void debug(){ | |||
printf(" --- size = %d, bucket_count = %d\n", size(), map.bucket_count()); } | |||
}; | |||
/*_________________________________________________________________________________________________ | |||
| | |||
| subsumes : (other : const Clause&) -> Lit | |||
| | |||
| Description: | |||
| Checks if clause subsumes 'other', and at the same time, if it can be used to simplify 'other' | |||
| by subsumption resolution. | |||
| | |||
| Result: | |||
| lit_Error - No subsumption or simplification | |||
| lit_Undef - Clause subsumes 'other' | |||
| p - The literal p can be deleted from 'other' | |||
|________________________________________________________________________________________________@*/ | |||
inline Lit Clause::subsumes(const Clause& other) const | |||
{ | |||
//if (other.size() < size() || (extra.abst & ~other.extra.abst) != 0) | |||
//if (other.size() < size() || (!learnt() && !other.learnt() && (extra.abst & ~other.extra.abst) != 0)) | |||
assert(!header.learnt); assert(!other.header.learnt); | |||
assert(header.has_extra); assert(other.header.has_extra); | |||
if (other.header.size < header.size || (data[header.size].abs & ~other.data[other.header.size].abs) != 0) | |||
return lit_Error; | |||
Lit ret = lit_Undef; | |||
const Lit* c = (const Lit*)(*this); | |||
const Lit* d = (const Lit*)other; | |||
for (unsigned i = 0; i < header.size; i++) { | |||
// search for c[i] or ~c[i] | |||
for (unsigned j = 0; j < other.header.size; j++) | |||
if (c[i] == d[j]) | |||
goto ok; | |||
else if (ret == lit_Undef && c[i] == ~d[j]){ | |||
ret = c[i]; | |||
goto ok; | |||
} | |||
// did not find it | |||
return lit_Error; | |||
ok:; | |||
} | |||
return ret; | |||
} | |||
inline void Clause::strengthen(Lit p) | |||
{ | |||
remove(*this, p); | |||
calcAbstraction(); | |||
} | |||
//================================================================================================= | |||
} | |||
#endif |
@ -0,0 +1,79 @@ | |||
Release Notes for MiniSat 2.2.0 | |||
=============================== | |||
Changes since version 2.0: | |||
* Started using a more standard release numbering. | |||
* Includes some now well-known heuristics: phase-saving and luby | |||
restarts. The old heuristics are still present and can be activated | |||
if needed. | |||
* Detection/Handling of out-of-memory and vector capacity | |||
overflow. This is fairly new and relatively untested. | |||
* Simple resource controls: CPU-time, memory, number of | |||
conflicts/decisions. | |||
* CPU-time limiting is implemented by a more general, but simple, | |||
asynchronous interruption feature. This means that the solving | |||
procedure can be interrupted from another thread or in a signal | |||
handler. | |||
* Improved portability with respect to building on Solaris and with | |||
Visual Studio. This is not regularly tested and chances are that | |||
this have been broken since, but should be fairly easy to fix if | |||
so. | |||
* Changed C++ file-extention to the less problematic ".cc". | |||
* Source code is now namespace-protected | |||
* Introducing a new Clause Memory Allocator that brings reduced | |||
memory consumption on 64-bit architechtures and improved | |||
performance (to some extent). The allocator uses a region-based | |||
approach were all references to clauses are represented as a 32-bit | |||
index into a global memory region that contains all clauses. To | |||
free up and compact memory it uses a simple copying garbage | |||
collector. | |||
* Improved unit-propagation by Blocking Literals. For each entry in | |||
the watcher lists, pair the pointer to a clause with some | |||
(arbitrary) literal from the clause. The idea is that if the | |||
literal is currently true (i.e. the clause is satisfied) the | |||
watchers of the clause does not need to be altered. This can thus | |||
be detected without touching the clause's memory at all. As often | |||
as can be done cheaply, the blocking literal for entries to the | |||
watcher list of a literal 'p' is set to the other literal watched | |||
in the corresponding clause. | |||
* Basic command-line/option handling system. Makes it easy to specify | |||
options in the class that they affect, and whenever that class is | |||
used in an executable, parsing of options and help messages are | |||
brought in automatically. | |||
* General clean-up and various minor bug-fixes. | |||
* Changed implementation of variable-elimination/model-extension: | |||
- The interface is changed so that arbitrary remembering is no longer | |||
possible. If you need to mention some variable again in the future, | |||
this variable has to be frozen. | |||
- When eliminating a variable, only clauses that contain the variable | |||
with one sign is necessary to store. Thereby making the other sign | |||
a "default" value when extending models. | |||
- The memory consumption for eliminated clauses is further improved | |||
by storing all eliminated clauses in a single contiguous vector. | |||
* Some common utility code (I/O, Parsing, CPU-time, etc) is ripped | |||
out and placed in a separate "utils" directory. | |||
* The DIMACS parse is refactored so that it can be reused in other | |||
applications (not very elegant, but at least possible). | |||
* Some simple improvements to scalability of preprocessing, using | |||
more lazy clause removal from data-structures and a couple of | |||
ad-hoc limits (the longest clause that can be produced in variable | |||
elimination, and the longest clause used in backward subsumption). |
@ -0,0 +1,84 @@ | |||
/*******************************************************************************************[Alg.h] | |||
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson | |||
Copyright (c) 2007-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#ifndef Minisat_Alg_h | |||
#define Minisat_Alg_h | |||
#include "mtl/Vec.h" | |||
namespace Minisat { | |||
//================================================================================================= | |||
// Useful functions on vector-like types: | |||
//================================================================================================= | |||
// Removing and searching for elements: | |||
// | |||
template<class V, class T> | |||
static inline void remove(V& ts, const T& t) | |||
{ | |||
int j = 0; | |||
for (; j < ts.size() && ts[j] != t; j++); | |||
assert(j < ts.size()); | |||
for (; j < ts.size()-1; j++) ts[j] = ts[j+1]; | |||
ts.pop(); | |||
} | |||
template<class V, class T> | |||
static inline bool find(V& ts, const T& t) | |||
{ | |||
int j = 0; | |||
for (; j < ts.size() && ts[j] != t; j++); | |||
return j < ts.size(); | |||
} | |||
//================================================================================================= | |||
// Copying vectors with support for nested vector types: | |||
// | |||
// Base case: | |||
template<class T> | |||
static inline void copy(const T& from, T& to) | |||
{ | |||
to = from; | |||
} | |||
// Recursive case: | |||
template<class T> | |||
static inline void copy(const vec<T>& from, vec<T>& to, bool append = false) | |||
{ | |||
if (!append) | |||
to.clear(); | |||
for (int i = 0; i < from.size(); i++){ | |||
to.push(); | |||
copy(from[i], to.last()); | |||
} | |||
} | |||
template<class T> | |||
static inline void append(const vec<T>& from, vec<T>& to){ copy(from, to, true); } | |||
//================================================================================================= | |||
} | |||
#endif |
@ -0,0 +1,131 @@ | |||
/*****************************************************************************************[Alloc.h] | |||
Copyright (c) 2008-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#ifndef Minisat_Alloc_h | |||
#define Minisat_Alloc_h | |||
#include "mtl/XAlloc.h" | |||
#include "mtl/Vec.h" | |||
namespace Minisat { | |||
//================================================================================================= | |||
// Simple Region-based memory allocator: | |||
template<class T> | |||
class RegionAllocator | |||
{ | |||
T* memory; | |||
uint32_t sz; | |||
uint32_t cap; | |||
uint32_t wasted_; | |||
void capacity(uint32_t min_cap); | |||
public: | |||
// TODO: make this a class for better type-checking? | |||
typedef uint32_t Ref; | |||
enum { Ref_Undef = UINT32_MAX }; | |||
enum { Unit_Size = sizeof(uint32_t) }; | |||
explicit RegionAllocator(uint32_t start_cap = 1024*1024) : memory(NULL), sz(0), cap(0), wasted_(0){ capacity(start_cap); } | |||
~RegionAllocator() | |||
{ | |||
if (memory != NULL) | |||
::free(memory); | |||
} | |||
uint32_t size () const { return sz; } | |||
uint32_t wasted () const { return wasted_; } | |||
Ref alloc (int size); | |||
void free (int size) { wasted_ += size; } | |||
// Deref, Load Effective Address (LEA), Inverse of LEA (AEL): | |||
T& operator[](Ref r) { assert(r >= 0 && r < sz); return memory[r]; } | |||
const T& operator[](Ref r) const { assert(r >= 0 && r < sz); return memory[r]; } | |||
T* lea (Ref r) { assert(r >= 0 && r < sz); return &memory[r]; } | |||
const T* lea (Ref r) const { assert(r >= 0 && r < sz); return &memory[r]; } | |||
Ref ael (const T* t) { assert((void*)t >= (void*)&memory[0] && (void*)t < (void*)&memory[sz-1]); | |||
return (Ref)(t - &memory[0]); } | |||
void moveTo(RegionAllocator& to) { | |||
if (to.memory != NULL) ::free(to.memory); | |||
to.memory = memory; | |||
to.sz = sz; | |||
to.cap = cap; | |||
to.wasted_ = wasted_; | |||
memory = NULL; | |||
sz = cap = wasted_ = 0; | |||
} | |||
}; | |||
template<class T> | |||
void RegionAllocator<T>::capacity(uint32_t min_cap) | |||
{ | |||
if (cap >= min_cap) return; | |||
uint32_t prev_cap = cap; | |||
while (cap < min_cap){ | |||
// NOTE: Multiply by a factor (13/8) without causing overflow, then add 2 and make the | |||
// result even by clearing the least significant bit. The resulting sequence of capacities | |||
// is carefully chosen to hit a maximum capacity that is close to the '2^32-1' limit when | |||
// using 'uint32_t' as indices so that as much as possible of this space can be used. | |||
uint32_t delta = ((cap >> 1) + (cap >> 3) + 2) & ~1; | |||
cap += delta; | |||
if (cap <= prev_cap) | |||
throw OutOfMemoryException(); | |||
} | |||
// printf(" .. (%p) cap = %u\n", this, cap); | |||
assert(cap > 0); | |||
memory = (T*)xrealloc(memory, sizeof(T)*cap); | |||
} | |||
template<class T> | |||
typename RegionAllocator<T>::Ref | |||
RegionAllocator<T>::alloc(int size) | |||
{ | |||
// printf("ALLOC called (this = %p, size = %d)\n", this, size); fflush(stdout); | |||
assert(size > 0); | |||
capacity(sz + size); | |||
uint32_t prev_sz = sz; | |||
sz += size; | |||
// Handle overflow: | |||
if (sz < prev_sz) | |||
throw OutOfMemoryException(); | |||
return prev_sz; | |||
} | |||
//================================================================================================= | |||
} | |||
#endif |
@ -0,0 +1,148 @@ | |||
/******************************************************************************************[Heap.h] | |||
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson | |||
Copyright (c) 2007-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#ifndef Minisat_Heap_h | |||
#define Minisat_Heap_h | |||
#include "mtl/Vec.h" | |||
namespace Minisat { | |||
//================================================================================================= | |||
// A heap implementation with support for decrease/increase key. | |||
template<class Comp> | |||
class Heap { | |||
Comp lt; // The heap is a minimum-heap with respect to this comparator | |||
vec<int> heap; // Heap of integers | |||
vec<int> indices; // Each integers position (index) in the Heap | |||
// Index "traversal" functions | |||
static inline int left (int i) { return i*2+1; } | |||
static inline int right (int i) { return (i+1)*2; } | |||
static inline int parent(int i) { return (i-1) >> 1; } | |||
void percolateUp(int i) | |||
{ | |||
int x = heap[i]; | |||
int p = parent(i); | |||
while (i != 0 && lt(x, heap[p])){ | |||
heap[i] = heap[p]; | |||
indices[heap[p]] = i; | |||
i = p; | |||
p = parent(p); | |||
} | |||
heap [i] = x; | |||
indices[x] = i; | |||
} | |||
void percolateDown(int i) | |||
{ | |||
int x = heap[i]; | |||
while (left(i) < heap.size()){ | |||
int child = right(i) < heap.size() && lt(heap[right(i)], heap[left(i)]) ? right(i) : left(i); | |||
if (!lt(heap[child], x)) break; | |||
heap[i] = heap[child]; | |||
indices[heap[i]] = i; | |||
i = child; | |||
} | |||
heap [i] = x; | |||
indices[x] = i; | |||
} | |||
public: | |||
Heap(const Comp& c) : lt(c) { } | |||
int size () const { return heap.size(); } | |||
bool empty () const { return heap.size() == 0; } | |||
bool inHeap (int n) const { return n < indices.size() && indices[n] >= 0; } | |||
int operator[](int index) const { assert(index < heap.size()); return heap[index]; } | |||
void decrease (int n) { assert(inHeap(n)); percolateUp (indices[n]); } | |||
void increase (int n) { assert(inHeap(n)); percolateDown(indices[n]); } | |||
// Safe variant of insert/decrease/increase: | |||
void update(int n) | |||
{ | |||
if (!inHeap(n)) | |||
insert(n); | |||
else { | |||
percolateUp(indices[n]); | |||
percolateDown(indices[n]); } | |||
} | |||
void insert(int n) | |||
{ | |||
indices.growTo(n+1, -1); | |||
assert(!inHeap(n)); | |||
indices[n] = heap.size(); | |||
heap.push(n); | |||
percolateUp(indices[n]); | |||
} | |||
int removeMin() | |||
{ | |||
int x = heap[0]; | |||
heap[0] = heap.last(); | |||
indices[heap[0]] = 0; | |||
indices[x] = -1; | |||
heap.pop(); | |||
if (heap.size() > 1) percolateDown(0); | |||
return x; | |||
} | |||
// Rebuild the heap from scratch, using the elements in 'ns': | |||
void build(vec<int>& ns) { | |||
for (int i = 0; i < heap.size(); i++) | |||
indices[heap[i]] = -1; | |||
heap.clear(); | |||
for (int i = 0; i < ns.size(); i++){ | |||
indices[ns[i]] = i; | |||
heap.push(ns[i]); } | |||
for (int i = heap.size() / 2 - 1; i >= 0; i--) | |||
percolateDown(i); | |||
} | |||
void clear(bool dealloc = false) | |||
{ | |||
for (int i = 0; i < heap.size(); i++) | |||
indices[heap[i]] = -1; | |||
heap.clear(dealloc); | |||
} | |||
}; | |||
//================================================================================================= | |||
} | |||
#endif |
@ -0,0 +1,42 @@ | |||
/**************************************************************************************[IntTypes.h] | |||
Copyright (c) 2009-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#ifndef Minisat_IntTypes_h | |||
#define Minisat_IntTypes_h | |||
#ifdef __sun | |||
// Not sure if there are newer versions that support C99 headers. The | |||
// needed features are implemented in the headers below though: | |||
# include <sys/int_types.h> | |||
# include <sys/int_fmtio.h> | |||
# include <sys/int_limits.h> | |||
#else | |||
# include <stdint.h> | |||
# include <inttypes.h> | |||
#endif | |||
#include <limits.h> | |||
//================================================================================================= | |||
#endif |
@ -0,0 +1,193 @@ | |||
/*******************************************************************************************[Map.h] | |||
Copyright (c) 2006-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#ifndef Minisat_Map_h | |||
#define Minisat_Map_h | |||
#include "mtl/IntTypes.h" | |||
#include "mtl/Vec.h" | |||
namespace Minisat { | |||
//================================================================================================= | |||
// Default hash/equals functions | |||
// | |||
template<class K> struct Hash { uint32_t operator()(const K& k) const { return hash(k); } }; | |||
template<class K> struct Equal { bool operator()(const K& k1, const K& k2) const { return k1 == k2; } }; | |||
template<class K> struct DeepHash { uint32_t operator()(const K* k) const { return hash(*k); } }; | |||
template<class K> struct DeepEqual { bool operator()(const K* k1, const K* k2) const { return *k1 == *k2; } }; | |||
static inline uint32_t hash(uint32_t x){ return x; } | |||
static inline uint32_t hash(uint64_t x){ return (uint32_t)x; } | |||
static inline uint32_t hash(int32_t x) { return (uint32_t)x; } | |||
static inline uint32_t hash(int64_t x) { return (uint32_t)x; } | |||
//================================================================================================= | |||
// Some primes | |||
// | |||
static const int nprimes = 25; | |||
static const int primes [nprimes] = { 31, 73, 151, 313, 643, 1291, 2593, 5233, 10501, 21013, 42073, 84181, 168451, 337219, 674701, 1349473, 2699299, 5398891, 10798093, 21596719, 43193641, 86387383, 172775299, 345550609, 691101253 }; | |||
//================================================================================================= | |||
// Hash table implementation of Maps | |||
// | |||
template<class K, class D, class H = Hash<K>, class E = Equal<K> > | |||
class Map { | |||
public: | |||
struct Pair { K key; D data; }; | |||
private: | |||
H hash; | |||
E equals; | |||
vec<Pair>* table; | |||
int cap; | |||
int size; | |||
// Don't allow copying (error prone): | |||
Map<K,D,H,E>& operator = (Map<K,D,H,E>& other) { assert(0); } | |||
Map (Map<K,D,H,E>& other) { assert(0); } | |||
bool checkCap(int new_size) const { return new_size > cap; } | |||
int32_t index (const K& k) const { return hash(k) % cap; } | |||
void _insert (const K& k, const D& d) { | |||
vec<Pair>& ps = table[index(k)]; | |||
ps.push(); ps.last().key = k; ps.last().data = d; } | |||
void rehash () { | |||
const vec<Pair>* old = table; | |||
int old_cap = cap; | |||
int newsize = primes[0]; | |||
for (int i = 1; newsize <= cap && i < nprimes; i++) | |||
newsize = primes[i]; | |||
table = new vec<Pair>[newsize]; | |||
cap = newsize; | |||
for (int i = 0; i < old_cap; i++){ | |||
for (int j = 0; j < old[i].size(); j++){ | |||
_insert(old[i][j].key, old[i][j].data); }} | |||
delete [] old; | |||
// printf(" --- rehashing, old-cap=%d, new-cap=%d\n", cap, newsize); | |||
} | |||
public: | |||
Map () : table(NULL), cap(0), size(0) {} | |||
Map (const H& h, const E& e) : hash(h), equals(e), table(NULL), cap(0), size(0){} | |||
~Map () { delete [] table; } | |||
// PRECONDITION: the key must already exist in the map. | |||
const D& operator [] (const K& k) const | |||
{ | |||
assert(size != 0); | |||
const D* res = NULL; | |||
const vec<Pair>& ps = table[index(k)]; | |||
for (int i = 0; i < ps.size(); i++) | |||
if (equals(ps[i].key, k)) | |||
res = &ps[i].data; | |||
assert(res != NULL); | |||
return *res; | |||
} | |||
// PRECONDITION: the key must already exist in the map. | |||
D& operator [] (const K& k) | |||
{ | |||
assert(size != 0); | |||
D* res = NULL; | |||
vec<Pair>& ps = table[index(k)]; | |||
for (int i = 0; i < ps.size(); i++) | |||
if (equals(ps[i].key, k)) | |||
res = &ps[i].data; | |||
assert(res != NULL); | |||
return *res; | |||
} | |||
// PRECONDITION: the key must *NOT* exist in the map. | |||
void insert (const K& k, const D& d) { if (checkCap(size+1)) rehash(); _insert(k, d); size++; } | |||
bool peek (const K& k, D& d) const { | |||
if (size == 0) return false; | |||
const vec<Pair>& ps = table[index(k)]; | |||
for (int i = 0; i < ps.size(); i++) | |||
if (equals(ps[i].key, k)){ | |||
d = ps[i].data; | |||
return true; } | |||
return false; | |||
} | |||
bool has (const K& k) const { | |||
if (size == 0) return false; | |||
const vec<Pair>& ps = table[index(k)]; | |||
for (int i = 0; i < ps.size(); i++) | |||
if (equals(ps[i].key, k)) | |||
return true; | |||
return false; | |||
} | |||
// PRECONDITION: the key must exist in the map. | |||
void remove(const K& k) { | |||
assert(table != NULL); | |||
vec<Pair>& ps = table[index(k)]; | |||
int j = 0; | |||
for (; j < ps.size() && !equals(ps[j].key, k); j++); | |||
assert(j < ps.size()); | |||
ps[j] = ps.last(); | |||
ps.pop(); | |||
size--; | |||
} | |||
void clear () { | |||
cap = size = 0; | |||
delete [] table; | |||
table = NULL; | |||
} | |||
int elems() const { return size; } | |||
int bucket_count() const { return cap; } | |||
// NOTE: the hash and equality objects are not moved by this method: | |||
void moveTo(Map& other){ | |||
delete [] other.table; | |||
other.table = table; | |||
other.cap = cap; | |||
other.size = size; | |||
table = NULL; | |||
size = cap = 0; | |||
} | |||
// NOTE: given a bit more time, I could make a more C++-style iterator out of this: | |||
const vec<Pair>& bucket(int i) const { return table[i]; } | |||
}; | |||
//================================================================================================= | |||
} | |||
#endif |
@ -0,0 +1,69 @@ | |||
/*****************************************************************************************[Queue.h] | |||
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson | |||
Copyright (c) 2007-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#ifndef Minisat_Queue_h | |||
#define Minisat_Queue_h | |||
#include "mtl/Vec.h" | |||
namespace Minisat { | |||
//================================================================================================= | |||
template<class T> | |||
class Queue { | |||
vec<T> buf; | |||
int first; | |||
int end; | |||
public: | |||
typedef T Key; | |||
Queue() : buf(1), first(0), end(0) {} | |||
void clear (bool dealloc = false) { buf.clear(dealloc); buf.growTo(1); first = end = 0; } | |||
int size () const { return (end >= first) ? end - first : end - first + buf.size(); } | |||
const T& operator [] (int index) const { assert(index >= 0); assert(index < size()); return buf[(first + index) % buf.size()]; } | |||
T& operator [] (int index) { assert(index >= 0); assert(index < size()); return buf[(first + index) % buf.size()]; } | |||
T peek () const { assert(first != end); return buf[first]; } | |||
void pop () { assert(first != end); first++; if (first == buf.size()) first = 0; } | |||
void insert(T elem) { // INVARIANT: buf[end] is always unused | |||
buf[end++] = elem; | |||
if (end == buf.size()) end = 0; | |||
if (first == end){ // Resize: | |||
vec<T> tmp((buf.size()*3 + 1) >> 1); | |||
//**/printf("queue alloc: %d elems (%.1f MB)\n", tmp.size(), tmp.size() * sizeof(T) / 1000000.0); | |||
int i = 0; | |||
for (int j = first; j < buf.size(); j++) tmp[i++] = buf[j]; | |||
for (int j = 0 ; j < end ; j++) tmp[i++] = buf[j]; | |||
first = 0; | |||
end = buf.size(); | |||
tmp.moveTo(buf); | |||
} | |||
} | |||
}; | |||
//================================================================================================= | |||
} | |||
#endif |
@ -0,0 +1,98 @@ | |||
/******************************************************************************************[Sort.h] | |||
Copyright (c) 2003-2007, Niklas Een, Niklas Sorensson | |||
Copyright (c) 2007-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#ifndef Minisat_Sort_h | |||
#define Minisat_Sort_h | |||
#include "mtl/Vec.h" | |||
//================================================================================================= | |||
// Some sorting algorithms for vec's | |||
namespace Minisat { | |||
template<class T> | |||
struct LessThan_default { | |||
bool operator () (T x, T y) { return x < y; } | |||
}; | |||
template <class T, class LessThan> | |||
void selectionSort(T* array, int size, LessThan lt) | |||
{ | |||
int i, j, best_i; | |||
T tmp; | |||
for (i = 0; i < size-1; i++){ | |||
best_i = i; | |||
for (j = i+1; j < size; j++){ | |||
if (lt(array[j], array[best_i])) | |||
best_i = j; | |||
} | |||
tmp = array[i]; array[i] = array[best_i]; array[best_i] = tmp; | |||
} | |||
} | |||
template <class T> static inline void selectionSort(T* array, int size) { | |||
selectionSort(array, size, LessThan_default<T>()); } | |||
template <class T, class LessThan> | |||
void sort(T* array, int size, LessThan lt) | |||
{ | |||
if (size <= 15) | |||
selectionSort(array, size, lt); | |||
else{ | |||
T pivot = array[size / 2]; | |||
T tmp; | |||
int i = -1; | |||
int j = size; | |||
for(;;){ | |||
do i++; while(lt(array[i], pivot)); | |||
do j--; while(lt(pivot, array[j])); | |||
if (i >= j) break; | |||
tmp = array[i]; array[i] = array[j]; array[j] = tmp; | |||
} | |||
sort(array , i , lt); | |||
sort(&array[i], size-i, lt); | |||
} | |||
} | |||
template <class T> static inline void sort(T* array, int size) { | |||
sort(array, size, LessThan_default<T>()); } | |||
//================================================================================================= | |||
// For 'vec's: | |||
template <class T, class LessThan> void sort(vec<T>& v, LessThan lt) { | |||
sort((T*)v, v.size(), lt); } | |||
template <class T> void sort(vec<T>& v) { | |||
sort(v, LessThan_default<T>()); } | |||
//================================================================================================= | |||
} | |||
#endif |
@ -0,0 +1,130 @@ | |||
/*******************************************************************************************[Vec.h] | |||
Copyright (c) 2003-2007, Niklas Een, Niklas Sorensson | |||
Copyright (c) 2007-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#ifndef Minisat_Vec_h | |||
#define Minisat_Vec_h | |||
#include <assert.h> | |||
#include <new> | |||
#include "mtl/IntTypes.h" | |||
#include "mtl/XAlloc.h" | |||
namespace Minisat { | |||
//================================================================================================= | |||
// Automatically resizable arrays | |||
// | |||
// NOTE! Don't use this vector on datatypes that cannot be re-located in memory (with realloc) | |||
template<class T> | |||
class vec { | |||
T* data; | |||
int sz; | |||
int cap; | |||
// Don't allow copying (error prone): | |||
vec<T>& operator = (vec<T>& other) { assert(0); return *this; } | |||
vec (vec<T>& other) { assert(0); } | |||
// Helpers for calculating next capacity: | |||
static inline int imax (int x, int y) { int mask = (y-x) >> (sizeof(int)*8-1); return (x&mask) + (y&(~mask)); } | |||
//static inline void nextCap(int& cap){ cap += ((cap >> 1) + 2) & ~1; } | |||
static inline void nextCap(int& cap){ cap += ((cap >> 1) + 2) & ~1; } | |||
public: | |||
// Constructors: | |||
vec() : data(NULL) , sz(0) , cap(0) { } | |||
explicit vec(int size) : data(NULL) , sz(0) , cap(0) { growTo(size); } | |||
vec(int size, const T& pad) : data(NULL) , sz(0) , cap(0) { growTo(size, pad); } | |||
~vec() { clear(true); } | |||
// Pointer to first element: | |||
operator T* (void) { return data; } | |||
// Size operations: | |||
int size (void) const { return sz; } | |||
void shrink (int nelems) { assert(nelems <= sz); for (int i = 0; i < nelems; i++) sz--, data[sz].~T(); } | |||
void shrink_ (int nelems) { assert(nelems <= sz); sz -= nelems; } | |||
int capacity (void) const { return cap; } | |||
void capacity (int min_cap); | |||
void growTo (int size); | |||
void growTo (int size, const T& pad); | |||
void clear (bool dealloc = false); | |||
// Stack interface: | |||
void push (void) { if (sz == cap) capacity(sz+1); new (&data[sz]) T(); sz++; } | |||
void push (const T& elem) { if (sz == cap) capacity(sz+1); data[sz++] = elem; } | |||
void push_ (const T& elem) { assert(sz < cap); data[sz++] = elem; } | |||
void pop (void) { assert(sz > 0); sz--, data[sz].~T(); } | |||
// NOTE: it seems possible that overflow can happen in the 'sz+1' expression of 'push()', but | |||
// in fact it can not since it requires that 'cap' is equal to INT_MAX. This in turn can not | |||
// happen given the way capacities are calculated (below). Essentially, all capacities are | |||
// even, but INT_MAX is odd. | |||
const T& last (void) const { return data[sz-1]; } | |||
T& last (void) { return data[sz-1]; } | |||
// Vector interface: | |||
const T& operator [] (int index) const { return data[index]; } | |||
T& operator [] (int index) { return data[index]; } | |||
// Duplicatation (preferred instead): | |||
void copyTo(vec<T>& copy) const { copy.clear(); copy.growTo(sz); for (int i = 0; i < sz; i++) copy[i] = data[i]; } | |||
void moveTo(vec<T>& dest) { dest.clear(true); dest.data = data; dest.sz = sz; dest.cap = cap; data = NULL; sz = 0; cap = 0; } | |||
}; | |||
template<class T> | |||
void vec<T>::capacity(int min_cap) { | |||
if (cap >= min_cap) return; | |||
int add = imax((min_cap - cap + 1) & ~1, ((cap >> 1) + 2) & ~1); // NOTE: grow by approximately 3/2 | |||
if (add > INT_MAX - cap || ((data = (T*)::realloc(data, (cap += add) * sizeof(T))) == NULL) && errno == ENOMEM) | |||
throw OutOfMemoryException(); | |||
} | |||
template<class T> | |||
void vec<T>::growTo(int size, const T& pad) { | |||
if (sz >= size) return; | |||
capacity(size); | |||
for (int i = sz; i < size; i++) data[i] = pad; | |||
sz = size; } | |||
template<class T> | |||
void vec<T>::growTo(int size) { | |||
if (sz >= size) return; | |||
capacity(size); | |||
for (int i = sz; i < size; i++) new (&data[i]) T(); | |||
sz = size; } | |||
template<class T> | |||
void vec<T>::clear(bool dealloc) { | |||
if (data != NULL){ | |||
for (int i = 0; i < sz; i++) data[i].~T(); | |||
sz = 0; | |||
if (dealloc) free(data), data = NULL, cap = 0; } } | |||
//================================================================================================= | |||
} | |||
#endif |
@ -0,0 +1,45 @@ | |||
/****************************************************************************************[XAlloc.h] | |||
Copyright (c) 2009-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#ifndef Minisat_XAlloc_h | |||
#define Minisat_XAlloc_h | |||
#include <errno.h> | |||
#include <stdlib.h> | |||
namespace Minisat { | |||
//================================================================================================= | |||
// Simple layer on top of malloc/realloc to catch out-of-memory situtaions and provide some typing: | |||
class OutOfMemoryException{}; | |||
static inline void* xrealloc(void *ptr, size_t size) | |||
{ | |||
void* mem = realloc(ptr, size); | |||
if (mem == NULL && errno == ENOMEM){ | |||
throw OutOfMemoryException(); | |||
}else | |||
return mem; | |||
} | |||
//================================================================================================= | |||
} | |||
#endif |
@ -0,0 +1,6 @@ | |||
## | |||
## This file is for system specific configurations. For instance, on | |||
## some systems the path to zlib needs to be added. Example: | |||
## | |||
## CFLAGS += -I/usr/local/include | |||
## LFLAGS += -L/usr/local/lib |
@ -0,0 +1,107 @@ | |||
## | |||
## Template makefile for Standard, Profile, Debug, Release, and Release-static versions | |||
## | |||
## eg: "make rs" for a statically linked release version. | |||
## "make d" for a debug version (no optimizations). | |||
## "make" for the standard version (optimized, but with debug information and assertions active) | |||
PWD = $(shell pwd) | |||
EXEC ?= $(notdir $(PWD)) | |||
CSRCS = $(wildcard $(PWD)/*.cc) | |||
DSRCS = $(foreach dir, $(DEPDIR), $(filter-out $(MROOT)/$(dir)/Main.cc, $(wildcard $(MROOT)/$(dir)/*.cc))) | |||
CHDRS = $(wildcard $(PWD)/*.h) | |||
COBJS = $(CSRCS:.cc=.o) $(DSRCS:.cc=.o) | |||
PCOBJS = $(addsuffix p, $(COBJS)) | |||
DCOBJS = $(addsuffix d, $(COBJS)) | |||
RCOBJS = $(addsuffix r, $(COBJS)) | |||
CXX ?= g++ | |||
CFLAGS ?= -Wall -Wno-parentheses | |||
LFLAGS ?= -Wall | |||
COPTIMIZE ?= -O3 | |||
CFLAGS += -I$(MROOT) -D __STDC_LIMIT_MACROS -D __STDC_FORMAT_MACROS | |||
LFLAGS += -lz | |||
.PHONY : s p d r rs clean | |||
s: $(EXEC) | |||
p: $(EXEC)_profile | |||
d: $(EXEC)_debug | |||
r: $(EXEC)_release | |||
rs: $(EXEC)_static | |||
libs: lib$(LIB)_standard.a | |||
libp: lib$(LIB)_profile.a | |||
libd: lib$(LIB)_debug.a | |||
libr: lib$(LIB)_release.a | |||
## Compile options | |||
%.o: CFLAGS +=$(COPTIMIZE) -g -D DEBUG | |||
%.op: CFLAGS +=$(COPTIMIZE) -pg -g -D NDEBUG | |||
%.od: CFLAGS +=-O0 -g -D DEBUG | |||
%.or: CFLAGS +=$(COPTIMIZE) -g -D NDEBUG | |||
## Link options | |||
$(EXEC): LFLAGS += -g | |||
$(EXEC)_profile: LFLAGS += -g -pg | |||
$(EXEC)_debug: LFLAGS += -g | |||
#$(EXEC)_release: LFLAGS += ... | |||
$(EXEC)_static: LFLAGS += --static | |||
## Dependencies | |||
$(EXEC): $(COBJS) | |||
$(EXEC)_profile: $(PCOBJS) | |||
$(EXEC)_debug: $(DCOBJS) | |||
$(EXEC)_release: $(RCOBJS) | |||
$(EXEC)_static: $(RCOBJS) | |||
lib$(LIB)_standard.a: $(filter-out */Main.o, $(COBJS)) | |||
lib$(LIB)_profile.a: $(filter-out */Main.op, $(PCOBJS)) | |||
lib$(LIB)_debug.a: $(filter-out */Main.od, $(DCOBJS)) | |||
lib$(LIB)_release.a: $(filter-out */Main.or, $(RCOBJS)) | |||
## Build rule | |||
%.o %.op %.od %.or: %.cc | |||
@echo Compiling: $(subst $(MROOT)/,,$@) | |||
@$(CXX) $(CFLAGS) -c -o $@ $< | |||
## Linking rules (standard/profile/debug/release) | |||
$(EXEC) $(EXEC)_profile $(EXEC)_debug $(EXEC)_release $(EXEC)_static: | |||
@echo Linking: "$@ ( $(foreach f,$^,$(subst $(MROOT)/,,$f)) )" | |||
@$(CXX) $^ $(LFLAGS) -o $@ | |||
## Library rules (standard/profile/debug/release) | |||
lib$(LIB)_standard.a lib$(LIB)_profile.a lib$(LIB)_release.a lib$(LIB)_debug.a: | |||
@echo Making library: "$@ ( $(foreach f,$^,$(subst $(MROOT)/,,$f)) )" | |||
@$(AR) -rcsv $@ $^ | |||
## Library Soft Link rule: | |||
libs libp libd libr: | |||
@echo "Making Soft Link: $^ -> lib$(LIB).a" | |||
@ln -sf $^ lib$(LIB).a | |||
## Clean rule | |||
clean: | |||
@rm -f $(EXEC) $(EXEC)_profile $(EXEC)_debug $(EXEC)_release $(EXEC)_static \ | |||
$(COBJS) $(PCOBJS) $(DCOBJS) $(RCOBJS) *.core depend.mk | |||
## Make dependencies | |||
depend.mk: $(CSRCS) $(CHDRS) | |||
@echo Making dependencies | |||
@$(CXX) $(CFLAGS) -I$(MROOT) \ | |||
$(CSRCS) -MM | sed 's|\(.*\):|$(PWD)/\1 $(PWD)/\1r $(PWD)/\1d $(PWD)/\1p:|' > depend.mk | |||
@for dir in $(DEPDIR); do \ | |||
if [ -r $(MROOT)/$${dir}/depend.mk ]; then \ | |||
echo Depends on: $${dir}; \ | |||
cat $(MROOT)/$${dir}/depend.mk >> depend.mk; \ | |||
fi; \ | |||
done | |||
-include $(MROOT)/mtl/config.mk | |||
-include depend.mk |
@ -0,0 +1,211 @@ | |||
/*****************************************************************************************[Main.cc] | |||
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson | |||
Copyright (c) 2007, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#include <errno.h> | |||
#include <signal.h> | |||
#include <zlib.h> | |||
#include <sys/resource.h> | |||
#include "utils/System.h" | |||
#include "utils/ParseUtils.h" | |||
#include "utils/Options.h" | |||
#include "core/Dimacs.h" | |||
#include "simp/SimpSolver.h" | |||
using namespace Minisat; | |||
//================================================================================================= | |||
void printStats(Solver& solver) | |||
{ | |||
double cpu_time = cpuTime(); | |||
double mem_used = memUsedPeak(); | |||
printf("restarts : %"PRIu64"\n", solver.starts); | |||
printf("conflicts : %-12"PRIu64" (%.0f /sec)\n", solver.conflicts , solver.conflicts /cpu_time); | |||
printf("decisions : %-12"PRIu64" (%4.2f %% random) (%.0f /sec)\n", solver.decisions, (float)solver.rnd_decisions*100 / (float)solver.decisions, solver.decisions /cpu_time); | |||
printf("propagations : %-12"PRIu64" (%.0f /sec)\n", solver.propagations, solver.propagations/cpu_time); | |||
printf("conflict literals : %-12"PRIu64" (%4.2f %% deleted)\n", solver.tot_literals, (solver.max_literals - solver.tot_literals)*100 / (double)solver.max_literals); | |||
if (mem_used != 0) printf("Memory used : %.2f MB\n", mem_used); | |||
printf("CPU time : %g s\n", cpu_time); | |||
} | |||
static Solver* solver; | |||
// Terminate by notifying the solver and back out gracefully. This is mainly to have a test-case | |||
// for this feature of the Solver as it may take longer than an immediate call to '_exit()'. | |||
static void SIGINT_interrupt(int signum) { solver->interrupt(); } | |||
// Note that '_exit()' rather than 'exit()' has to be used. The reason is that 'exit()' calls | |||
// destructors and may cause deadlocks if a malloc/free function happens to be running (these | |||
// functions are guarded by locks for multithreaded use). | |||
static void SIGINT_exit(int signum) { | |||
printf("\n"); printf("*** INTERRUPTED ***\n"); | |||
if (solver->verbosity > 0){ | |||
printStats(*solver); | |||
printf("\n"); printf("*** INTERRUPTED ***\n"); } | |||
_exit(1); } | |||
//================================================================================================= | |||
// Main: | |||
int main(int argc, char** argv) | |||
{ | |||
try { | |||
setUsageHelp("USAGE: %s [options] <input-file> <result-output-file>\n\n where input may be either in plain or gzipped DIMACS.\n"); | |||
// printf("This is MiniSat 2.0 beta\n"); | |||
#if defined(__linux__) | |||
fpu_control_t oldcw, newcw; | |||
_FPU_GETCW(oldcw); newcw = (oldcw & ~_FPU_EXTENDED) | _FPU_DOUBLE; _FPU_SETCW(newcw); | |||
printf("WARNING: for repeatability, setting FPU to use double precision\n"); | |||
#endif | |||
// Extra options: | |||
// | |||
IntOption verb ("MAIN", "verb", "Verbosity level (0=silent, 1=some, 2=more).", 1, IntRange(0, 2)); | |||
BoolOption pre ("MAIN", "pre", "Completely turn on/off any preprocessing.", true); | |||
StringOption dimacs ("MAIN", "dimacs", "If given, stop after preprocessing and write the result to this file."); | |||
IntOption cpu_lim("MAIN", "cpu-lim","Limit on CPU time allowed in seconds.\n", INT32_MAX, IntRange(0, INT32_MAX)); | |||
IntOption mem_lim("MAIN", "mem-lim","Limit on memory usage in megabytes.\n", INT32_MAX, IntRange(0, INT32_MAX)); | |||
parseOptions(argc, argv, true); | |||
SimpSolver S; | |||
double initial_time = cpuTime(); | |||
if (!pre) S.eliminate(true); | |||
S.verbosity = verb; | |||
solver = &S; | |||
// Use signal handlers that forcibly quit until the solver will be able to respond to | |||
// interrupts: | |||
signal(SIGINT, SIGINT_exit); | |||
signal(SIGXCPU,SIGINT_exit); | |||
// Set limit on CPU-time: | |||
if (cpu_lim != INT32_MAX){ | |||
rlimit rl; | |||
getrlimit(RLIMIT_CPU, &rl); | |||
if (rl.rlim_max == RLIM_INFINITY || (rlim_t)cpu_lim < rl.rlim_max){ | |||
rl.rlim_cur = cpu_lim; | |||
if (setrlimit(RLIMIT_CPU, &rl) == -1) | |||
printf("WARNING! Could not set resource limit: CPU-time.\n"); | |||
} } | |||
// Set limit on virtual memory: | |||
if (mem_lim != INT32_MAX){ | |||
rlim_t new_mem_lim = (rlim_t)mem_lim * 1024*1024; | |||
rlimit rl; | |||
getrlimit(RLIMIT_AS, &rl); | |||
if (rl.rlim_max == RLIM_INFINITY || new_mem_lim < rl.rlim_max){ | |||
rl.rlim_cur = new_mem_lim; | |||
if (setrlimit(RLIMIT_AS, &rl) == -1) | |||
printf("WARNING! Could not set resource limit: Virtual memory.\n"); | |||
} } | |||
if (argc == 1) | |||
printf("Reading from standard input... Use '--help' for help.\n"); | |||
gzFile in = (argc == 1) ? gzdopen(0, "rb") : gzopen(argv[1], "rb"); | |||
if (in == NULL) | |||
printf("ERROR! Could not open file: %s\n", argc == 1 ? "<stdin>" : argv[1]), exit(1); | |||
if (S.verbosity > 0){ | |||
printf("============================[ Problem Statistics ]=============================\n"); | |||
printf("| |\n"); } | |||
parse_DIMACS(in, S); | |||
gzclose(in); | |||
FILE* res = (argc >= 3) ? fopen(argv[2], "wb") : NULL; | |||
if (S.verbosity > 0){ | |||
printf("| Number of variables: %12d |\n", S.nVars()); | |||
printf("| Number of clauses: %12d |\n", S.nClauses()); } | |||
double parsed_time = cpuTime(); | |||
if (S.verbosity > 0) | |||
printf("| Parse time: %12.2f s |\n", parsed_time - initial_time); | |||
// Change to signal-handlers that will only notify the solver and allow it to terminate | |||
// voluntarily: | |||
signal(SIGINT, SIGINT_interrupt); | |||
signal(SIGXCPU,SIGINT_interrupt); | |||
S.eliminate(true); | |||
double simplified_time = cpuTime(); | |||
if (S.verbosity > 0){ | |||
printf("| Simplification time: %12.2f s |\n", simplified_time - parsed_time); | |||
printf("| |\n"); } | |||
if (!S.okay()){ | |||
if (res != NULL) fprintf(res, "UNSAT\n"), fclose(res); | |||
if (S.verbosity > 0){ | |||
printf("===============================================================================\n"); | |||
printf("Solved by simplification\n"); | |||
printStats(S); | |||
printf("\n"); } | |||
printf("UNSATISFIABLE\n"); | |||
exit(20); | |||
} | |||
if (dimacs){ | |||
if (S.verbosity > 0) | |||
printf("==============================[ Writing DIMACS ]===============================\n"); | |||
S.toDimacs((const char*)dimacs); | |||
if (S.verbosity > 0) | |||
printStats(S); | |||
exit(0); | |||
} | |||
vec<Lit> dummy; | |||
lbool ret = S.solveLimited(dummy); | |||
if (S.verbosity > 0){ | |||
printStats(S); | |||
printf("\n"); } | |||
printf(ret == l_True ? "SATISFIABLE\n" : ret == l_False ? "UNSATISFIABLE\n" : "INDETERMINATE\n"); | |||
if (res != NULL){ | |||
if (ret == l_True){ | |||
fprintf(res, "SAT\n"); | |||
for (int i = 0; i < S.nVars(); i++) | |||
if (S.model[i] != l_Undef) | |||
fprintf(res, "%s%s%d", (i==0)?"":" ", (S.model[i]==l_True)?"":"-", i+1); | |||
fprintf(res, " 0\n"); | |||
}else if (ret == l_False) | |||
fprintf(res, "UNSAT\n"); | |||
else | |||
fprintf(res, "INDET\n"); | |||
fclose(res); | |||
} | |||
#ifdef NDEBUG | |||
exit(ret == l_True ? 10 : ret == l_False ? 20 : 0); // (faster than "return", which will invoke the destructor for 'Solver') | |||
#else | |||
return (ret == l_True ? 10 : ret == l_False ? 20 : 0); | |||
#endif | |||
} catch (OutOfMemoryException&){ | |||
printf("===============================================================================\n"); | |||
printf("INDETERMINATE\n"); | |||
exit(0); | |||
} | |||
} |
@ -0,0 +1,4 @@ | |||
EXEC = minisat | |||
DEPDIR = mtl utils core | |||
include $(MROOT)/mtl/template.mk |
@ -0,0 +1,717 @@ | |||
/***********************************************************************************[SimpSolver.cc] | |||
Copyright (c) 2006, Niklas Een, Niklas Sorensson | |||
Copyright (c) 2007-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#include "mtl/Sort.h" | |||
#include "simp/SimpSolver.h" | |||
#include "utils/System.h" | |||
using namespace Minisat; | |||
//================================================================================================= | |||
// Options: | |||
static const char* _cat = "SIMP"; | |||
static BoolOption opt_use_asymm (_cat, "asymm", "Shrink clauses by asymmetric branching.", false); | |||
static BoolOption opt_use_rcheck (_cat, "rcheck", "Check if a clause is already implied. (costly)", false); | |||
static BoolOption opt_use_elim (_cat, "elim", "Perform variable elimination.", true); | |||
static IntOption opt_grow (_cat, "grow", "Allow a variable elimination step to grow by a number of clauses.", 0); | |||
static IntOption opt_clause_lim (_cat, "cl-lim", "Variables are not eliminated if it produces a resolvent with a length above this limit. -1 means no limit", 20, IntRange(-1, INT32_MAX)); | |||
static IntOption opt_subsumption_lim (_cat, "sub-lim", "Do not check if subsumption against a clause larger than this. -1 means no limit.", 1000, IntRange(-1, INT32_MAX)); | |||
static DoubleOption opt_simp_garbage_frac(_cat, "simp-gc-frac", "The fraction of wasted memory allowed before a garbage collection is triggered during simplification.", 0.5, DoubleRange(0, false, HUGE_VAL, false)); | |||
//================================================================================================= | |||
// Constructor/Destructor: | |||
SimpSolver::SimpSolver() : | |||
grow (opt_grow) | |||
, clause_lim (opt_clause_lim) | |||
, subsumption_lim (opt_subsumption_lim) | |||
, simp_garbage_frac (opt_simp_garbage_frac) | |||
, use_asymm (opt_use_asymm) | |||
, use_rcheck (opt_use_rcheck) | |||
, use_elim (opt_use_elim) | |||
, merges (0) | |||
, asymm_lits (0) | |||
, eliminated_vars (0) | |||
, elimorder (1) | |||
, use_simplification (true) | |||
, occurs (ClauseDeleted(ca)) | |||
, elim_heap (ElimLt(n_occ)) | |||
, bwdsub_assigns (0) | |||
, n_touched (0) | |||
{ | |||
vec<Lit> dummy(1,lit_Undef); | |||
ca.extra_clause_field = true; // NOTE: must happen before allocating the dummy clause below. | |||
bwdsub_tmpunit = ca.alloc(dummy); | |||
remove_satisfied = false; | |||
} | |||
SimpSolver::~SimpSolver() | |||
{ | |||
} | |||
Var SimpSolver::newVar(bool sign, bool dvar) { | |||
Var v = Solver::newVar(sign, dvar); | |||
frozen .push((char)false); | |||
eliminated.push((char)false); | |||
if (use_simplification){ | |||
n_occ .push(0); | |||
n_occ .push(0); | |||
occurs .init(v); | |||
touched .push(0); | |||
elim_heap .insert(v); | |||
} | |||
return v; } | |||
lbool SimpSolver::solve_(bool do_simp, bool turn_off_simp) | |||
{ | |||
vec<Var> extra_frozen; | |||
lbool result = l_True; | |||
do_simp &= use_simplification; | |||
if (do_simp){ | |||
// Assumptions must be temporarily frozen to run variable elimination: | |||
for (int i = 0; i < assumptions.size(); i++){ | |||
Var v = var(assumptions[i]); | |||
// If an assumption has been eliminated, remember it. | |||
assert(!isEliminated(v)); | |||
if (!frozen[v]){ | |||
// Freeze and store. | |||
setFrozen(v, true); | |||
extra_frozen.push(v); | |||
} } | |||
result = lbool(eliminate(turn_off_simp)); | |||
} | |||
if (result == l_True) | |||
result = Solver::solve_(); | |||
else if (verbosity >= 1) | |||
printf("===============================================================================\n"); | |||
if (result == l_True) | |||
extendModel(); | |||
if (do_simp) | |||
// Unfreeze the assumptions that were frozen: | |||
for (int i = 0; i < extra_frozen.size(); i++) | |||
setFrozen(extra_frozen[i], false); | |||
return result; | |||
} | |||
bool SimpSolver::addClause_(vec<Lit>& ps) | |||
{ | |||
#ifndef NDEBUG | |||
for (int i = 0; i < ps.size(); i++) | |||
assert(!isEliminated(var(ps[i]))); | |||
#endif | |||
int nclauses = clauses.size(); | |||
if (use_rcheck && implied(ps)) | |||
return true; | |||
if (!Solver::addClause_(ps)) | |||
return false; | |||
if (use_simplification && clauses.size() == nclauses + 1){ | |||
CRef cr = clauses.last(); | |||
const Clause& c = ca[cr]; | |||
// NOTE: the clause is added to the queue immediately and then | |||
// again during 'gatherTouchedClauses()'. If nothing happens | |||
// in between, it will only be checked once. Otherwise, it may | |||
// be checked twice unnecessarily. This is an unfortunate | |||
// consequence of how backward subsumption is used to mimic | |||
// forward subsumption. | |||
subsumption_queue.insert(cr); | |||
for (int i = 0; i < c.size(); i++){ | |||
occurs[var(c[i])].push(cr); | |||
n_occ[toInt(c[i])]++; | |||
touched[var(c[i])] = 1; | |||
n_touched++; | |||
if (elim_heap.inHeap(var(c[i]))) | |||
elim_heap.increase(var(c[i])); | |||
} | |||
} | |||
return true; | |||
} | |||
void SimpSolver::removeClause(CRef cr) | |||
{ | |||
const Clause& c = ca[cr]; | |||
if (use_simplification) | |||
for (int i = 0; i < c.size(); i++){ | |||
n_occ[toInt(c[i])]--; | |||
updateElimHeap(var(c[i])); | |||
occurs.smudge(var(c[i])); | |||
} | |||
Solver::removeClause(cr); | |||
} | |||
bool SimpSolver::strengthenClause(CRef cr, Lit l) | |||
{ | |||
Clause& c = ca[cr]; | |||
assert(decisionLevel() == 0); | |||
assert(use_simplification); | |||
// FIX: this is too inefficient but would be nice to have (properly implemented) | |||
// if (!find(subsumption_queue, &c)) | |||
subsumption_queue.insert(cr); | |||
if (c.size() == 2){ | |||
removeClause(cr); | |||
c.strengthen(l); | |||
}else{ | |||
detachClause(cr, true); | |||
c.strengthen(l); | |||
attachClause(cr); | |||
remove(occurs[var(l)], cr); | |||
n_occ[toInt(l)]--; | |||
updateElimHeap(var(l)); | |||
} | |||
return c.size() == 1 ? enqueue(c[0]) && propagate() == CRef_Undef : true; | |||
} | |||
// Returns FALSE if clause is always satisfied ('out_clause' should not be used). | |||
bool SimpSolver::merge(const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause) | |||
{ | |||
merges++; | |||
out_clause.clear(); | |||
bool ps_smallest = _ps.size() < _qs.size(); | |||
const Clause& ps = ps_smallest ? _qs : _ps; | |||
const Clause& qs = ps_smallest ? _ps : _qs; | |||
for (int i = 0; i < qs.size(); i++){ | |||
if (var(qs[i]) != v){ | |||
for (int j = 0; j < ps.size(); j++) | |||
if (var(ps[j]) == var(qs[i])) | |||
if (ps[j] == ~qs[i]) | |||
return false; | |||
else | |||
goto next; | |||
out_clause.push(qs[i]); | |||
} | |||
next:; | |||
} | |||
for (int i = 0; i < ps.size(); i++) | |||
if (var(ps[i]) != v) | |||
out_clause.push(ps[i]); | |||
return true; | |||
} | |||
// Returns FALSE if clause is always satisfied. | |||
bool SimpSolver::merge(const Clause& _ps, const Clause& _qs, Var v, int& size) | |||
{ | |||
merges++; | |||
bool ps_smallest = _ps.size() < _qs.size(); | |||
const Clause& ps = ps_smallest ? _qs : _ps; | |||
const Clause& qs = ps_smallest ? _ps : _qs; | |||
const Lit* __ps = (const Lit*)ps; | |||
const Lit* __qs = (const Lit*)qs; | |||
size = ps.size()-1; | |||
for (int i = 0; i < qs.size(); i++){ | |||
if (var(__qs[i]) != v){ | |||
for (int j = 0; j < ps.size(); j++) | |||
if (var(__ps[j]) == var(__qs[i])) | |||
if (__ps[j] == ~__qs[i]) | |||
return false; | |||
else | |||
goto next; | |||
size++; | |||
} | |||
next:; | |||
} | |||
return true; | |||
} | |||
void SimpSolver::gatherTouchedClauses() | |||
{ | |||
if (n_touched == 0) return; | |||
int i,j; | |||
for (i = j = 0; i < subsumption_queue.size(); i++) | |||
if (ca[subsumption_queue[i]].mark() == 0) | |||
ca[subsumption_queue[i]].mark(2); | |||
for (i = 0; i < touched.size(); i++) | |||
if (touched[i]){ | |||
const vec<CRef>& cs = occurs.lookup(i); | |||
for (j = 0; j < cs.size(); j++) | |||
if (ca[cs[j]].mark() == 0){ | |||
subsumption_queue.insert(cs[j]); | |||
ca[cs[j]].mark(2); | |||
} | |||
touched[i] = 0; | |||
} | |||
for (i = 0; i < subsumption_queue.size(); i++) | |||
if (ca[subsumption_queue[i]].mark() == 2) | |||
ca[subsumption_queue[i]].mark(0); | |||
n_touched = 0; | |||
} | |||
bool SimpSolver::implied(const vec<Lit>& c) | |||
{ | |||
assert(decisionLevel() == 0); | |||
trail_lim.push(trail.size()); | |||
for (int i = 0; i < c.size(); i++) | |||
if (value(c[i]) == l_True){ | |||
cancelUntil(0); | |||
return false; | |||
}else if (value(c[i]) != l_False){ | |||
assert(value(c[i]) == l_Undef); | |||
uncheckedEnqueue(~c[i]); | |||
} | |||
bool result = propagate() != CRef_Undef; | |||
cancelUntil(0); | |||
return result; | |||
} | |||
// Backward subsumption + backward subsumption resolution | |||
bool SimpSolver::backwardSubsumptionCheck(bool verbose) | |||
{ | |||
int cnt = 0; | |||
int subsumed = 0; | |||
int deleted_literals = 0; | |||
assert(decisionLevel() == 0); | |||
while (subsumption_queue.size() > 0 || bwdsub_assigns < trail.size()){ | |||
// Empty subsumption queue and return immediately on user-interrupt: | |||
if (asynch_interrupt){ | |||
subsumption_queue.clear(); | |||
bwdsub_assigns = trail.size(); | |||
break; } | |||
// Check top-level assignments by creating a dummy clause and placing it in the queue: | |||
if (subsumption_queue.size() == 0 && bwdsub_assigns < trail.size()){ | |||
Lit l = trail[bwdsub_assigns++]; | |||
ca[bwdsub_tmpunit][0] = l; | |||
ca[bwdsub_tmpunit].calcAbstraction(); | |||
subsumption_queue.insert(bwdsub_tmpunit); } | |||
CRef cr = subsumption_queue.peek(); subsumption_queue.pop(); | |||
Clause& c = ca[cr]; | |||
if (c.mark()) continue; | |||
if (verbose && verbosity >= 2 && cnt++ % 1000 == 0) | |||
printf("subsumption left: %10d (%10d subsumed, %10d deleted literals)\r", subsumption_queue.size(), subsumed, deleted_literals); | |||
assert(c.size() > 1 || value(c[0]) == l_True); // Unit-clauses should have been propagated before this point. | |||
// Find best variable to scan: | |||
Var best = var(c[0]); | |||
for (int i = 1; i < c.size(); i++) | |||
if (occurs[var(c[i])].size() < occurs[best].size()) | |||
best = var(c[i]); | |||
// Search all candidates: | |||
vec<CRef>& _cs = occurs.lookup(best); | |||
CRef* cs = (CRef*)_cs; | |||
for (int j = 0; j < _cs.size(); j++) | |||
if (c.mark()) | |||
break; | |||
else if (!ca[cs[j]].mark() && cs[j] != cr && (subsumption_lim == -1 || ca[cs[j]].size() < subsumption_lim)){ | |||
Lit l = c.subsumes(ca[cs[j]]); | |||
if (l == lit_Undef) | |||
subsumed++, removeClause(cs[j]); | |||
else if (l != lit_Error){ | |||
deleted_literals++; | |||
if (!strengthenClause(cs[j], ~l)) | |||
return false; | |||
// Did current candidate get deleted from cs? Then check candidate at index j again: | |||
if (var(l) == best) | |||
j--; | |||
} | |||
} | |||
} | |||
return true; | |||
} | |||
bool SimpSolver::asymm(Var v, CRef cr) | |||
{ | |||
Clause& c = ca[cr]; | |||
assert(decisionLevel() == 0); | |||
if (c.mark() || satisfied(c)) return true; | |||
trail_lim.push(trail.size()); | |||
Lit l = lit_Undef; | |||
for (int i = 0; i < c.size(); i++) | |||
if (var(c[i]) != v && value(c[i]) != l_False) | |||
uncheckedEnqueue(~c[i]); | |||
else | |||
l = c[i]; | |||
if (propagate() != CRef_Undef){ | |||
cancelUntil(0); | |||
asymm_lits++; | |||
if (!strengthenClause(cr, l)) | |||
return false; | |||
}else | |||
cancelUntil(0); | |||
return true; | |||
} | |||
bool SimpSolver::asymmVar(Var v) | |||
{ | |||
assert(use_simplification); | |||
const vec<CRef>& cls = occurs.lookup(v); | |||
if (value(v) != l_Undef || cls.size() == 0) | |||
return true; | |||
for (int i = 0; i < cls.size(); i++) | |||
if (!asymm(v, cls[i])) | |||
return false; | |||
return backwardSubsumptionCheck(); | |||
} | |||
static void mkElimClause(vec<uint32_t>& elimclauses, Lit x) | |||
{ | |||
elimclauses.push(toInt(x)); | |||
elimclauses.push(1); | |||
} | |||
static void mkElimClause(vec<uint32_t>& elimclauses, Var v, Clause& c) | |||
{ | |||
int first = elimclauses.size(); | |||
int v_pos = -1; | |||
// Copy clause to elimclauses-vector. Remember position where the | |||
// variable 'v' occurs: | |||
for (int i = 0; i < c.size(); i++){ | |||
elimclauses.push(toInt(c[i])); | |||
if (var(c[i]) == v) | |||
v_pos = i + first; | |||
} | |||
assert(v_pos != -1); | |||
// Swap the first literal with the 'v' literal, so that the literal | |||
// containing 'v' will occur first in the clause: | |||
uint32_t tmp = elimclauses[v_pos]; | |||
elimclauses[v_pos] = elimclauses[first]; | |||
elimclauses[first] = tmp; | |||
// Store the length of the clause last: | |||
elimclauses.push(c.size()); | |||
} | |||
bool SimpSolver::eliminateVar(Var v) | |||
{ | |||
assert(!frozen[v]); | |||
assert(!isEliminated(v)); | |||
assert(value(v) == l_Undef); | |||
// Split the occurrences into positive and negative: | |||
// | |||
const vec<CRef>& cls = occurs.lookup(v); | |||
vec<CRef> pos, neg; | |||
for (int i = 0; i < cls.size(); i++) | |||
(find(ca[cls[i]], mkLit(v)) ? pos : neg).push(cls[i]); | |||
// Check wether the increase in number of clauses stays within the allowed ('grow'). Moreover, no | |||
// clause must exceed the limit on the maximal clause size (if it is set): | |||
// | |||
int cnt = 0; | |||
int clause_size = 0; | |||
for (int i = 0; i < pos.size(); i++) | |||
for (int j = 0; j < neg.size(); j++) | |||
if (merge(ca[pos[i]], ca[neg[j]], v, clause_size) && | |||
(++cnt > cls.size() + grow || (clause_lim != -1 && clause_size > clause_lim))) | |||
return true; | |||
// Delete and store old clauses: | |||
eliminated[v] = true; | |||
setDecisionVar(v, false); | |||
eliminated_vars++; | |||
if (pos.size() > neg.size()){ | |||
for (int i = 0; i < neg.size(); i++) | |||
mkElimClause(elimclauses, v, ca[neg[i]]); | |||
mkElimClause(elimclauses, mkLit(v)); | |||
}else{ | |||
for (int i = 0; i < pos.size(); i++) | |||
mkElimClause(elimclauses, v, ca[pos[i]]); | |||
mkElimClause(elimclauses, ~mkLit(v)); | |||
} | |||
for (int i = 0; i < cls.size(); i++) | |||
removeClause(cls[i]); | |||
// Produce clauses in cross product: | |||
vec<Lit>& resolvent = add_tmp; | |||
for (int i = 0; i < pos.size(); i++) | |||
for (int j = 0; j < neg.size(); j++) | |||
if (merge(ca[pos[i]], ca[neg[j]], v, resolvent) && !addClause_(resolvent)) | |||
return false; | |||
// Free occurs list for this variable: | |||
occurs[v].clear(true); | |||
// Free watchers lists for this variable, if possible: | |||
if (watches[ mkLit(v)].size() == 0) watches[ mkLit(v)].clear(true); | |||
if (watches[~mkLit(v)].size() == 0) watches[~mkLit(v)].clear(true); | |||
return backwardSubsumptionCheck(); | |||
} | |||
bool SimpSolver::substitute(Var v, Lit x) | |||
{ | |||
assert(!frozen[v]); | |||
assert(!isEliminated(v)); | |||
assert(value(v) == l_Undef); | |||
if (!ok) return false; | |||
eliminated[v] = true; | |||
setDecisionVar(v, false); | |||
const vec<CRef>& cls = occurs.lookup(v); | |||
vec<Lit>& subst_clause = add_tmp; | |||
for (int i = 0; i < cls.size(); i++){ | |||
Clause& c = ca[cls[i]]; | |||
subst_clause.clear(); | |||
for (int j = 0; j < c.size(); j++){ | |||
Lit p = c[j]; | |||
subst_clause.push(var(p) == v ? x ^ sign(p) : p); | |||
} | |||
removeClause(cls[i]); | |||
if (!addClause_(subst_clause)) | |||
return ok = false; | |||
} | |||
return true; | |||
} | |||
void SimpSolver::extendModel() | |||
{ | |||
int i, j; | |||
Lit x; | |||
for (i = elimclauses.size()-1; i > 0; i -= j){ | |||
for (j = elimclauses[i--]; j > 1; j--, i--) | |||
if (modelValue(toLit(elimclauses[i])) != l_False) | |||
goto next; | |||
x = toLit(elimclauses[i]); | |||
model[var(x)] = lbool(!sign(x)); | |||
next:; | |||
} | |||
} | |||
bool SimpSolver::eliminate(bool turn_off_elim) | |||
{ | |||
if (!simplify()) | |||
return false; | |||
else if (!use_simplification) | |||
return true; | |||
// Main simplification loop: | |||
// | |||
while (n_touched > 0 || bwdsub_assigns < trail.size() || elim_heap.size() > 0){ | |||
gatherTouchedClauses(); | |||
// printf(" ## (time = %6.2f s) BWD-SUB: queue = %d, trail = %d\n", cpuTime(), subsumption_queue.size(), trail.size() - bwdsub_assigns); | |||
if ((subsumption_queue.size() > 0 || bwdsub_assigns < trail.size()) && | |||
!backwardSubsumptionCheck(true)){ | |||
ok = false; goto cleanup; } | |||
// Empty elim_heap and return immediately on user-interrupt: | |||
if (asynch_interrupt){ | |||
assert(bwdsub_assigns == trail.size()); | |||
assert(subsumption_queue.size() == 0); | |||
assert(n_touched == 0); | |||
elim_heap.clear(); | |||
goto cleanup; } | |||
// printf(" ## (time = %6.2f s) ELIM: vars = %d\n", cpuTime(), elim_heap.size()); | |||
for (int cnt = 0; !elim_heap.empty(); cnt++){ | |||
Var elim = elim_heap.removeMin(); | |||
if (asynch_interrupt) break; | |||
if (isEliminated(elim) || value(elim) != l_Undef) continue; | |||
if (verbosity >= 2 && cnt % 100 == 0) | |||
printf("elimination left: %10d\r", elim_heap.size()); | |||
if (use_asymm){ | |||
// Temporarily freeze variable. Otherwise, it would immediately end up on the queue again: | |||
bool was_frozen = frozen[elim]; | |||
frozen[elim] = true; | |||
if (!asymmVar(elim)){ | |||
ok = false; goto cleanup; } | |||
frozen[elim] = was_frozen; } | |||
// At this point, the variable may have been set by assymetric branching, so check it | |||
// again. Also, don't eliminate frozen variables: | |||
if (use_elim && value(elim) == l_Undef && !frozen[elim] && !eliminateVar(elim)){ | |||
ok = false; goto cleanup; } | |||
checkGarbage(simp_garbage_frac); | |||
} | |||
assert(subsumption_queue.size() == 0); | |||
} | |||
cleanup: | |||
// If no more simplification is needed, free all simplification-related data structures: | |||
if (turn_off_elim){ | |||
touched .clear(true); | |||
occurs .clear(true); | |||
n_occ .clear(true); | |||
elim_heap.clear(true); | |||
subsumption_queue.clear(true); | |||
use_simplification = false; | |||
remove_satisfied = true; | |||
ca.extra_clause_field = false; | |||
// Force full cleanup (this is safe and desirable since it only happens once): | |||
rebuildOrderHeap(); | |||
garbageCollect(); | |||
}else{ | |||
// Cheaper cleanup: | |||
cleanUpClauses(); // TODO: can we make 'cleanUpClauses()' not be linear in the problem size somehow? | |||
checkGarbage(); | |||
} | |||
if (verbosity >= 1 && elimclauses.size() > 0) | |||
printf("| Eliminated clauses: %10.2f Mb |\n", | |||
double(elimclauses.size() * sizeof(uint32_t)) / (1024*1024)); | |||
return ok; | |||
} | |||
void SimpSolver::cleanUpClauses() | |||
{ | |||
occurs.cleanAll(); | |||
int i,j; | |||
for (i = j = 0; i < clauses.size(); i++) | |||
if (ca[clauses[i]].mark() == 0) | |||
clauses[j++] = clauses[i]; | |||
clauses.shrink(i - j); | |||
} | |||
//================================================================================================= | |||
// Garbage Collection methods: | |||
void SimpSolver::relocAll(ClauseAllocator& to) | |||
{ | |||
if (!use_simplification) return; | |||
// All occurs lists: | |||
// | |||
for (int i = 0; i < nVars(); i++){ | |||
vec<CRef>& cs = occurs[i]; | |||
for (int j = 0; j < cs.size(); j++) | |||
ca.reloc(cs[j], to); | |||
} | |||
// Subsumption queue: | |||
// | |||
for (int i = 0; i < subsumption_queue.size(); i++) | |||
ca.reloc(subsumption_queue[i], to); | |||
// Temporary clause: | |||
// | |||
ca.reloc(bwdsub_tmpunit, to); | |||
} | |||
void SimpSolver::garbageCollect() | |||
{ | |||
// Initialize the next region to a size corresponding to the estimated utilization degree. This | |||
// is not precise but should avoid some unnecessary reallocations for the new region: | |||
ClauseAllocator to(ca.size() - ca.wasted()); | |||
cleanUpClauses(); | |||
to.extra_clause_field = ca.extra_clause_field; // NOTE: this is important to keep (or lose) the extra fields. | |||
relocAll(to); | |||
Solver::relocAll(to); | |||
if (verbosity >= 2) | |||
printf("| Garbage collection: %12d bytes => %12d bytes |\n", | |||
ca.size()*ClauseAllocator::Unit_Size, to.size()*ClauseAllocator::Unit_Size); | |||
to.moveTo(ca); | |||
} |
@ -0,0 +1,197 @@ | |||
/************************************************************************************[SimpSolver.h] | |||
Copyright (c) 2006, Niklas Een, Niklas Sorensson | |||
Copyright (c) 2007-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#ifndef Minisat_SimpSolver_h | |||
#define Minisat_SimpSolver_h | |||
#include "mtl/Queue.h" | |||
#include "core/Solver.h" | |||
namespace Minisat { | |||
//================================================================================================= | |||
class SimpSolver : public Solver { | |||
public: | |||
// Constructor/Destructor: | |||
// | |||
SimpSolver(); | |||
~SimpSolver(); | |||
// Problem specification: | |||
// | |||
Var newVar (bool polarity = true, bool dvar = true); | |||
bool addClause (const vec<Lit>& ps); | |||
bool addEmptyClause(); // Add the empty clause to the solver. | |||
bool addClause (Lit p); // Add a unit clause to the solver. | |||
bool addClause (Lit p, Lit q); // Add a binary clause to the solver. | |||
bool addClause (Lit p, Lit q, Lit r); // Add a ternary clause to the solver. | |||
bool addClause_( vec<Lit>& ps); | |||
bool substitute(Var v, Lit x); // Replace all occurences of v with x (may cause a contradiction). | |||
// Variable mode: | |||
// | |||
void setFrozen (Var v, bool b); // If a variable is frozen it will not be eliminated. | |||
bool isEliminated(Var v) const; | |||
// Solving: | |||
// | |||
bool solve (const vec<Lit>& assumps, bool do_simp = true, bool turn_off_simp = false); | |||
lbool solveLimited(const vec<Lit>& assumps, bool do_simp = true, bool turn_off_simp = false); | |||
bool solve ( bool do_simp = true, bool turn_off_simp = false); | |||
bool solve (Lit p , bool do_simp = true, bool turn_off_simp = false); | |||
bool solve (Lit p, Lit q, bool do_simp = true, bool turn_off_simp = false); | |||
bool solve (Lit p, Lit q, Lit r, bool do_simp = true, bool turn_off_simp = false); | |||
bool eliminate (bool turn_off_elim = false); // Perform variable elimination based simplification. | |||
// Memory managment: | |||
// | |||
virtual void garbageCollect(); | |||
// Generate a (possibly simplified) DIMACS file: | |||
// | |||
#if 0 | |||
void toDimacs (const char* file, const vec<Lit>& assumps); | |||
void toDimacs (const char* file); | |||
void toDimacs (const char* file, Lit p); | |||
void toDimacs (const char* file, Lit p, Lit q); | |||
void toDimacs (const char* file, Lit p, Lit q, Lit r); | |||
#endif | |||
// Mode of operation: | |||
// | |||
int grow; // Allow a variable elimination step to grow by a number of clauses (default to zero). | |||
int clause_lim; // Variables are not eliminated if it produces a resolvent with a length above this limit. | |||
// -1 means no limit. | |||
int subsumption_lim; // Do not check if subsumption against a clause larger than this. -1 means no limit. | |||
double simp_garbage_frac; // A different limit for when to issue a GC during simplification (Also see 'garbage_frac'). | |||
bool use_asymm; // Shrink clauses by asymmetric branching. | |||
bool use_rcheck; // Check if a clause is already implied. Prett costly, and subsumes subsumptions :) | |||
bool use_elim; // Perform variable elimination. | |||
// Statistics: | |||
// | |||
int merges; | |||
int asymm_lits; | |||
int eliminated_vars; | |||
protected: | |||
// Helper structures: | |||
// | |||
struct ElimLt { | |||
const vec<int>& n_occ; | |||
explicit ElimLt(const vec<int>& no) : n_occ(no) {} | |||
// TODO: are 64-bit operations here noticably bad on 32-bit platforms? Could use a saturating | |||
// 32-bit implementation instead then, but this will have to do for now. | |||
uint64_t cost (Var x) const { return (uint64_t)n_occ[toInt(mkLit(x))] * (uint64_t)n_occ[toInt(~mkLit(x))]; } | |||
bool operator()(Var x, Var y) const { return cost(x) < cost(y); } | |||
// TODO: investigate this order alternative more. | |||
// bool operator()(Var x, Var y) const { | |||
// int c_x = cost(x); | |||
// int c_y = cost(y); | |||
// return c_x < c_y || c_x == c_y && x < y; } | |||
}; | |||
struct ClauseDeleted { | |||
const ClauseAllocator& ca; | |||
explicit ClauseDeleted(const ClauseAllocator& _ca) : ca(_ca) {} | |||
bool operator()(const CRef& cr) const { return ca[cr].mark() == 1; } }; | |||
// Solver state: | |||
// | |||
int elimorder; | |||
bool use_simplification; | |||
vec<uint32_t> elimclauses; | |||
vec<char> touched; | |||
OccLists<Var, vec<CRef>, ClauseDeleted> | |||
occurs; | |||
vec<int> n_occ; | |||
Heap<ElimLt> elim_heap; | |||
Queue<CRef> subsumption_queue; | |||
vec<char> frozen; | |||
vec<char> eliminated; | |||
int bwdsub_assigns; | |||
int n_touched; | |||
// Temporaries: | |||
// | |||
CRef bwdsub_tmpunit; | |||
// Main internal methods: | |||
// | |||
lbool solve_ (bool do_simp = true, bool turn_off_simp = false); | |||
bool asymm (Var v, CRef cr); | |||
bool asymmVar (Var v); | |||
void updateElimHeap (Var v); | |||
void gatherTouchedClauses (); | |||
bool merge (const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause); | |||
bool merge (const Clause& _ps, const Clause& _qs, Var v, int& size); | |||
bool backwardSubsumptionCheck (bool verbose = false); | |||
bool eliminateVar (Var v); | |||
void extendModel (); | |||
void removeClause (CRef cr); | |||
bool strengthenClause (CRef cr, Lit l); | |||
void cleanUpClauses (); | |||
bool implied (const vec<Lit>& c); | |||
void relocAll (ClauseAllocator& to); | |||
}; | |||
//================================================================================================= | |||
// Implementation of inline methods: | |||
inline bool SimpSolver::isEliminated (Var v) const { return eliminated[v]; } | |||
inline void SimpSolver::updateElimHeap(Var v) { | |||
assert(use_simplification); | |||
// if (!frozen[v] && !isEliminated(v) && value(v) == l_Undef) | |||
if (elim_heap.inHeap(v) || (!frozen[v] && !isEliminated(v) && value(v) == l_Undef)) | |||
elim_heap.update(v); } | |||
inline bool SimpSolver::addClause (const vec<Lit>& ps) { ps.copyTo(add_tmp); return addClause_(add_tmp); } | |||
inline bool SimpSolver::addEmptyClause() { add_tmp.clear(); return addClause_(add_tmp); } | |||
inline bool SimpSolver::addClause (Lit p) { add_tmp.clear(); add_tmp.push(p); return addClause_(add_tmp); } | |||
inline bool SimpSolver::addClause (Lit p, Lit q) { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); return addClause_(add_tmp); } | |||
inline bool SimpSolver::addClause (Lit p, Lit q, Lit r) { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); add_tmp.push(r); return addClause_(add_tmp); } | |||
inline void SimpSolver::setFrozen (Var v, bool b) { frozen[v] = (char)b; if (use_simplification && !b) { updateElimHeap(v); } } | |||
inline bool SimpSolver::solve ( bool do_simp, bool turn_off_simp) { budgetOff(); assumptions.clear(); return solve_(do_simp, turn_off_simp) == l_True; } | |||
inline bool SimpSolver::solve (Lit p , bool do_simp, bool turn_off_simp) { budgetOff(); assumptions.clear(); assumptions.push(p); return solve_(do_simp, turn_off_simp) == l_True; } | |||
inline bool SimpSolver::solve (Lit p, Lit q, bool do_simp, bool turn_off_simp) { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); return solve_(do_simp, turn_off_simp) == l_True; } | |||
inline bool SimpSolver::solve (Lit p, Lit q, Lit r, bool do_simp, bool turn_off_simp) { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); assumptions.push(r); return solve_(do_simp, turn_off_simp) == l_True; } | |||
inline bool SimpSolver::solve (const vec<Lit>& assumps, bool do_simp, bool turn_off_simp){ | |||
budgetOff(); assumps.copyTo(assumptions); return solve_(do_simp, turn_off_simp) == l_True; } | |||
inline lbool SimpSolver::solveLimited (const vec<Lit>& assumps, bool do_simp, bool turn_off_simp){ | |||
assumps.copyTo(assumptions); return solve_(do_simp, turn_off_simp); } | |||
//================================================================================================= | |||
} | |||
#endif |
@ -0,0 +1,4 @@ | |||
EXEC = system_test | |||
DEPDIR = mtl | |||
include $(MROOT)/mtl/template.mk |
@ -0,0 +1,91 @@ | |||
/**************************************************************************************[Options.cc] | |||
Copyright (c) 2008-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#include "mtl/Sort.h" | |||
#include "utils/Options.h" | |||
#include "utils/ParseUtils.h" | |||
using namespace Minisat; | |||
void Minisat::parseOptions(int& argc, char** argv, bool strict) | |||
{ | |||
int i, j; | |||
for (i = j = 1; i < argc; i++){ | |||
const char* str = argv[i]; | |||
if (match(str, "--") && match(str, Option::getHelpPrefixString()) && match(str, "help")){ | |||
if (*str == '\0') | |||
printUsageAndExit(argc, argv); | |||
else if (match(str, "-verb")) | |||
printUsageAndExit(argc, argv, true); | |||
} else { | |||
bool parsed_ok = false; | |||
for (int k = 0; !parsed_ok && k < Option::getOptionList().size(); k++){ | |||
parsed_ok = Option::getOptionList()[k]->parse(argv[i]); | |||
// fprintf(stderr, "checking %d: %s against flag <%s> (%s)\n", i, argv[i], Option::getOptionList()[k]->name, parsed_ok ? "ok" : "skip"); | |||
} | |||
if (!parsed_ok) | |||
if (strict && match(argv[i], "-")) | |||
fprintf(stderr, "ERROR! Unknown flag \"%s\". Use '--%shelp' for help.\n", argv[i], Option::getHelpPrefixString()), exit(1); | |||
else | |||
argv[j++] = argv[i]; | |||
} | |||
} | |||
argc -= (i - j); | |||
} | |||
void Minisat::setUsageHelp (const char* str){ Option::getUsageString() = str; } | |||
void Minisat::setHelpPrefixStr (const char* str){ Option::getHelpPrefixString() = str; } | |||
void Minisat::printUsageAndExit (int argc, char** argv, bool verbose) | |||
{ | |||
const char* usage = Option::getUsageString(); | |||
if (usage != NULL) | |||
fprintf(stderr, usage, argv[0]); | |||
sort(Option::getOptionList(), Option::OptionLt()); | |||
const char* prev_cat = NULL; | |||
const char* prev_type = NULL; | |||
for (int i = 0; i < Option::getOptionList().size(); i++){ | |||
const char* cat = Option::getOptionList()[i]->category; | |||
const char* type = Option::getOptionList()[i]->type_name; | |||
if (cat != prev_cat) | |||
fprintf(stderr, "\n%s OPTIONS:\n\n", cat); | |||
else if (type != prev_type) | |||
fprintf(stderr, "\n"); | |||
Option::getOptionList()[i]->help(verbose); | |||
prev_cat = Option::getOptionList()[i]->category; | |||
prev_type = Option::getOptionList()[i]->type_name; | |||
} | |||
fprintf(stderr, "\nHELP OPTIONS:\n\n"); | |||
fprintf(stderr, " --%shelp Print help message.\n", Option::getHelpPrefixString()); | |||
fprintf(stderr, " --%shelp-verb Print verbose help message.\n", Option::getHelpPrefixString()); | |||
fprintf(stderr, "\n"); | |||
exit(0); | |||
} | |||
@ -0,0 +1,386 @@ | |||
/***************************************************************************************[Options.h] | |||
Copyright (c) 2008-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#ifndef Minisat_Options_h | |||
#define Minisat_Options_h | |||
#include <stdlib.h> | |||
#include <stdio.h> | |||
#include <math.h> | |||
#include <string.h> | |||
#include "mtl/IntTypes.h" | |||
#include "mtl/Vec.h" | |||
#include "utils/ParseUtils.h" | |||
namespace Minisat { | |||
//================================================================================================== | |||
// Top-level option parse/help functions: | |||
extern void parseOptions (int& argc, char** argv, bool strict = false); | |||
extern void printUsageAndExit(int argc, char** argv, bool verbose = false); | |||
extern void setUsageHelp (const char* str); | |||
extern void setHelpPrefixStr (const char* str); | |||
//================================================================================================== | |||
// Options is an abstract class that gives the interface for all types options: | |||
class Option | |||
{ | |||
protected: | |||
const char* name; | |||
const char* description; | |||
const char* category; | |||
const char* type_name; | |||
static vec<Option*>& getOptionList () { static vec<Option*> options; return options; } | |||
static const char*& getUsageString() { static const char* usage_str; return usage_str; } | |||
static const char*& getHelpPrefixString() { static const char* help_prefix_str = ""; return help_prefix_str; } | |||
struct OptionLt { | |||
bool operator()(const Option* x, const Option* y) { | |||
int test1 = strcmp(x->category, y->category); | |||
return test1 < 0 || test1 == 0 && strcmp(x->type_name, y->type_name) < 0; | |||
} | |||
}; | |||
Option(const char* name_, | |||
const char* desc_, | |||
const char* cate_, | |||
const char* type_) : | |||
name (name_) | |||
, description(desc_) | |||
, category (cate_) | |||
, type_name (type_) | |||
{ | |||
getOptionList().push(this); | |||
} | |||
public: | |||
virtual ~Option() {} | |||
virtual bool parse (const char* str) = 0; | |||
virtual void help (bool verbose = false) = 0; | |||
friend void parseOptions (int& argc, char** argv, bool strict); | |||
friend void printUsageAndExit (int argc, char** argv, bool verbose); | |||
friend void setUsageHelp (const char* str); | |||
friend void setHelpPrefixStr (const char* str); | |||
}; | |||
//================================================================================================== | |||
// Range classes with specialization for floating types: | |||
struct IntRange { | |||
int begin; | |||
int end; | |||
IntRange(int b, int e) : begin(b), end(e) {} | |||
}; | |||
struct Int64Range { | |||
int64_t begin; | |||
int64_t end; | |||
Int64Range(int64_t b, int64_t e) : begin(b), end(e) {} | |||
}; | |||
struct DoubleRange { | |||
double begin; | |||
double end; | |||
bool begin_inclusive; | |||
bool end_inclusive; | |||
DoubleRange(double b, bool binc, double e, bool einc) : begin(b), end(e), begin_inclusive(binc), end_inclusive(einc) {} | |||
}; | |||
//================================================================================================== | |||
// Double options: | |||
class DoubleOption : public Option | |||
{ | |||
protected: | |||
DoubleRange range; | |||
double value; | |||
public: | |||
DoubleOption(const char* c, const char* n, const char* d, double def = double(), DoubleRange r = DoubleRange(-HUGE_VAL, false, HUGE_VAL, false)) | |||
: Option(n, d, c, "<double>"), range(r), value(def) { | |||
// FIXME: set LC_NUMERIC to "C" to make sure that strtof/strtod parses decimal point correctly. | |||
} | |||
operator double (void) const { return value; } | |||
operator double& (void) { return value; } | |||
DoubleOption& operator=(double x) { value = x; return *this; } | |||
virtual bool parse(const char* str){ | |||
const char* span = str; | |||
if (!match(span, "-") || !match(span, name) || !match(span, "=")) | |||
return false; | |||
char* end; | |||
double tmp = strtod(span, &end); | |||
if (end == NULL) | |||
return false; | |||
else if (tmp >= range.end && (!range.end_inclusive || tmp != range.end)){ | |||
fprintf(stderr, "ERROR! value <%s> is too large for option \"%s\".\n", span, name); | |||
exit(1); | |||
}else if (tmp <= range.begin && (!range.begin_inclusive || tmp != range.begin)){ | |||
fprintf(stderr, "ERROR! value <%s> is too small for option \"%s\".\n", span, name); | |||
exit(1); } | |||
value = tmp; | |||
// fprintf(stderr, "READ VALUE: %g\n", value); | |||
return true; | |||
} | |||
virtual void help (bool verbose = false){ | |||
fprintf(stderr, " -%-12s = %-8s %c%4.2g .. %4.2g%c (default: %g)\n", | |||
name, type_name, | |||
range.begin_inclusive ? '[' : '(', | |||
range.begin, | |||
range.end, | |||
range.end_inclusive ? ']' : ')', | |||
value); | |||
if (verbose){ | |||
fprintf(stderr, "\n %s\n", description); | |||
fprintf(stderr, "\n"); | |||
} | |||
} | |||
}; | |||
//================================================================================================== | |||
// Int options: | |||
class IntOption : public Option | |||
{ | |||
protected: | |||
IntRange range; | |||
int32_t value; | |||
public: | |||
IntOption(const char* c, const char* n, const char* d, int32_t def = int32_t(), IntRange r = IntRange(INT32_MIN, INT32_MAX)) | |||
: Option(n, d, c, "<int32>"), range(r), value(def) {} | |||
operator int32_t (void) const { return value; } | |||
operator int32_t& (void) { return value; } | |||
IntOption& operator= (int32_t x) { value = x; return *this; } | |||
virtual bool parse(const char* str){ | |||
const char* span = str; | |||
if (!match(span, "-") || !match(span, name) || !match(span, "=")) | |||
return false; | |||
char* end; | |||
int32_t tmp = strtol(span, &end, 10); | |||
if (end == NULL) | |||
return false; | |||
else if (tmp > range.end){ | |||
fprintf(stderr, "ERROR! value <%s> is too large for option \"%s\".\n", span, name); | |||
exit(1); | |||
}else if (tmp < range.begin){ | |||
fprintf(stderr, "ERROR! value <%s> is too small for option \"%s\".\n", span, name); | |||
exit(1); } | |||
value = tmp; | |||
return true; | |||
} | |||
virtual void help (bool verbose = false){ | |||
fprintf(stderr, " -%-12s = %-8s [", name, type_name); | |||
if (range.begin == INT32_MIN) | |||
fprintf(stderr, "imin"); | |||
else | |||
fprintf(stderr, "%4d", range.begin); | |||
fprintf(stderr, " .. "); | |||
if (range.end == INT32_MAX) | |||
fprintf(stderr, "imax"); | |||
else | |||
fprintf(stderr, "%4d", range.end); | |||
fprintf(stderr, "] (default: %d)\n", value); | |||
if (verbose){ | |||
fprintf(stderr, "\n %s\n", description); | |||
fprintf(stderr, "\n"); | |||
} | |||
} | |||
}; | |||
// Leave this out for visual C++ until Microsoft implements C99 and gets support for strtoll. | |||
#ifndef _MSC_VER | |||
class Int64Option : public Option | |||
{ | |||
protected: | |||
Int64Range range; | |||
int64_t value; | |||
public: | |||
Int64Option(const char* c, const char* n, const char* d, int64_t def = int64_t(), Int64Range r = Int64Range(INT64_MIN, INT64_MAX)) | |||
: Option(n, d, c, "<int64>"), range(r), value(def) {} | |||
operator int64_t (void) const { return value; } | |||
operator int64_t& (void) { return value; } | |||
Int64Option& operator= (int64_t x) { value = x; return *this; } | |||
virtual bool parse(const char* str){ | |||
const char* span = str; | |||
if (!match(span, "-") || !match(span, name) || !match(span, "=")) | |||
return false; | |||
char* end; | |||
int64_t tmp = strtoll(span, &end, 10); | |||
if (end == NULL) | |||
return false; | |||
else if (tmp > range.end){ | |||
fprintf(stderr, "ERROR! value <%s> is too large for option \"%s\".\n", span, name); | |||
exit(1); | |||
}else if (tmp < range.begin){ | |||
fprintf(stderr, "ERROR! value <%s> is too small for option \"%s\".\n", span, name); | |||
exit(1); } | |||
value = tmp; | |||
return true; | |||
} | |||
virtual void help (bool verbose = false){ | |||
fprintf(stderr, " -%-12s = %-8s [", name, type_name); | |||
if (range.begin == INT64_MIN) | |||
fprintf(stderr, "imin"); | |||
else | |||
fprintf(stderr, "%4"PRIi64, range.begin); | |||
fprintf(stderr, " .. "); | |||
if (range.end == INT64_MAX) | |||
fprintf(stderr, "imax"); | |||
else | |||
fprintf(stderr, "%4"PRIi64, range.end); | |||
fprintf(stderr, "] (default: %"PRIi64")\n", value); | |||
if (verbose){ | |||
fprintf(stderr, "\n %s\n", description); | |||
fprintf(stderr, "\n"); | |||
} | |||
} | |||
}; | |||
#endif | |||
//================================================================================================== | |||
// String option: | |||
class StringOption : public Option | |||
{ | |||
const char* value; | |||
public: | |||
StringOption(const char* c, const char* n, const char* d, const char* def = NULL) | |||
: Option(n, d, c, "<string>"), value(def) {} | |||
operator const char* (void) const { return value; } | |||
operator const char*& (void) { return value; } | |||
StringOption& operator= (const char* x) { value = x; return *this; } | |||
virtual bool parse(const char* str){ | |||
const char* span = str; | |||
if (!match(span, "-") || !match(span, name) || !match(span, "=")) | |||
return false; | |||
value = span; | |||
return true; | |||
} | |||
virtual void help (bool verbose = false){ | |||
fprintf(stderr, " -%-10s = %8s\n", name, type_name); | |||
if (verbose){ | |||
fprintf(stderr, "\n %s\n", description); | |||
fprintf(stderr, "\n"); | |||
} | |||
} | |||
}; | |||
//================================================================================================== | |||
// Bool option: | |||
class BoolOption : public Option | |||
{ | |||
bool value; | |||
public: | |||
BoolOption(const char* c, const char* n, const char* d, bool v) | |||
: Option(n, d, c, "<bool>"), value(v) {} | |||
operator bool (void) const { return value; } | |||
operator bool& (void) { return value; } | |||
BoolOption& operator=(bool b) { value = b; return *this; } | |||
virtual bool parse(const char* str){ | |||
const char* span = str; | |||
if (match(span, "-")){ | |||
bool b = !match(span, "no-"); | |||
if (strcmp(span, name) == 0){ | |||
value = b; | |||
return true; } | |||
} | |||
return false; | |||
} | |||
virtual void help (bool verbose = false){ | |||
fprintf(stderr, " -%s, -no-%s", name, name); | |||
for (uint32_t i = 0; i < 32 - strlen(name)*2; i++) | |||
fprintf(stderr, " "); | |||
fprintf(stderr, " "); | |||
fprintf(stderr, "(default: %s)\n", value ? "on" : "off"); | |||
if (verbose){ | |||
fprintf(stderr, "\n %s\n", description); | |||
fprintf(stderr, "\n"); | |||
} | |||
} | |||
}; | |||
//================================================================================================= | |||
} | |||
#endif |
@ -0,0 +1,122 @@ | |||
/************************************************************************************[ParseUtils.h] | |||
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson | |||
Copyright (c) 2007-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#ifndef Minisat_ParseUtils_h | |||
#define Minisat_ParseUtils_h | |||
#include <stdlib.h> | |||
#include <stdio.h> | |||
#include <zlib.h> | |||
namespace Minisat { | |||
//------------------------------------------------------------------------------------------------- | |||
// A simple buffered character stream class: | |||
static const int buffer_size = 1048576; | |||
class StreamBuffer { | |||
gzFile in; | |||
unsigned char buf[buffer_size]; | |||
int pos; | |||
int size; | |||
void assureLookahead() { | |||
if (pos >= size) { | |||
pos = 0; | |||
size = gzread(in, buf, sizeof(buf)); } } | |||
public: | |||
explicit StreamBuffer(gzFile i) : in(i), pos(0), size(0) { assureLookahead(); } | |||
int operator * () const { return (pos >= size) ? EOF : buf[pos]; } | |||
void operator ++ () { pos++; assureLookahead(); } | |||
int position () const { return pos; } | |||
}; | |||
//------------------------------------------------------------------------------------------------- | |||
// End-of-file detection functions for StreamBuffer and char*: | |||
static inline bool isEof(StreamBuffer& in) { return *in == EOF; } | |||
static inline bool isEof(const char* in) { return *in == '\0'; } | |||
//------------------------------------------------------------------------------------------------- | |||
// Generic parse functions parametrized over the input-stream type. | |||
template<class B> | |||
static void skipWhitespace(B& in) { | |||
while ((*in >= 9 && *in <= 13) || *in == 32) | |||
++in; } | |||
template<class B> | |||
static void skipLine(B& in) { | |||
for (;;){ | |||
if (isEof(in)) return; | |||
if (*in == '\n') { ++in; return; } | |||
++in; } } | |||
template<class B> | |||
static int parseInt(B& in) { | |||
int val = 0; | |||
bool neg = false; | |||
skipWhitespace(in); | |||
if (*in == '-') neg = true, ++in; | |||
else if (*in == '+') ++in; | |||
if (*in < '0' || *in > '9') fprintf(stderr, "PARSE ERROR! Unexpected char: %c\n", *in), exit(3); | |||
while (*in >= '0' && *in <= '9') | |||
val = val*10 + (*in - '0'), | |||
++in; | |||
return neg ? -val : val; } | |||
// String matching: in case of a match the input iterator will be advanced the corresponding | |||
// number of characters. | |||
template<class B> | |||
static bool match(B& in, const char* str) { | |||
int i; | |||
for (i = 0; str[i] != '\0'; i++) | |||
if (in[i] != str[i]) | |||
return false; | |||
in += i; | |||
return true; | |||
} | |||
// String matching: consumes characters eagerly, but does not require random access iterator. | |||
template<class B> | |||
static bool eagerMatch(B& in, const char* str) { | |||
for (; *str != '\0'; ++str, ++in) | |||
if (*str != *in) | |||
return false; | |||
return true; } | |||
//================================================================================================= | |||
} | |||
#endif |
@ -0,0 +1,95 @@ | |||
/***************************************************************************************[System.cc] | |||
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson | |||
Copyright (c) 2007-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#include "utils/System.h" | |||
#if defined(__linux__) | |||
#include <stdio.h> | |||
#include <stdlib.h> | |||
using namespace Minisat; | |||
// TODO: split the memory reading functions into two: one for reading high-watermark of RSS, and | |||
// one for reading the current virtual memory size. | |||
static inline int memReadStat(int field) | |||
{ | |||
char name[256]; | |||
pid_t pid = getpid(); | |||
int value; | |||
sprintf(name, "/proc/%d/statm", pid); | |||
FILE* in = fopen(name, "rb"); | |||
if (in == NULL) return 0; | |||
for (; field >= 0; field--) | |||
if (fscanf(in, "%d", &value) != 1) | |||
printf("ERROR! Failed to parse memory statistics from \"/proc\".\n"), exit(1); | |||
fclose(in); | |||
return value; | |||
} | |||
static inline int memReadPeak(void) | |||
{ | |||
char name[256]; | |||
pid_t pid = getpid(); | |||
sprintf(name, "/proc/%d/status", pid); | |||
FILE* in = fopen(name, "rb"); | |||
if (in == NULL) return 0; | |||
// Find the correct line, beginning with "VmPeak:": | |||
int peak_kb = 0; | |||
while (!feof(in) && fscanf(in, "VmPeak: %d kB", &peak_kb) != 1) | |||
while (!feof(in) && fgetc(in) != '\n') | |||
; | |||
fclose(in); | |||
return peak_kb; | |||
} | |||
double Minisat::memUsed() { return (double)memReadStat(0) * (double)getpagesize() / (1024*1024); } | |||
double Minisat::memUsedPeak() { | |||
double peak = memReadPeak() / 1024; | |||
return peak == 0 ? memUsed() : peak; } | |||
#elif defined(__FreeBSD__) | |||
double Minisat::memUsed(void) { | |||
struct rusage ru; | |||
getrusage(RUSAGE_SELF, &ru); | |||
return (double)ru.ru_maxrss / 1024; } | |||
double MiniSat::memUsedPeak(void) { return memUsed(); } | |||
#elif defined(__APPLE__) | |||
#include <malloc/malloc.h> | |||
double Minisat::memUsed(void) { | |||
malloc_statistics_t t; | |||
malloc_zone_statistics(NULL, &t); | |||
return (double)t.max_size_in_use / (1024*1024); } | |||
#else | |||
double Minisat::memUsed() { | |||
return 0; } | |||
#endif |
@ -0,0 +1,60 @@ | |||
/****************************************************************************************[System.h] | |||
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson | |||
Copyright (c) 2007-2010, Niklas Sorensson | |||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and | |||
associated documentation files (the "Software"), to deal in the Software without restriction, | |||
including without limitation the rights to use, copy, modify, merge, publish, distribute, | |||
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all copies or | |||
substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT | |||
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, | |||
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT | |||
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |||
**************************************************************************************************/ | |||
#ifndef Minisat_System_h | |||
#define Minisat_System_h | |||
#if defined(__linux__) | |||
#include <fpu_control.h> | |||
#endif | |||
#include "mtl/IntTypes.h" | |||
//------------------------------------------------------------------------------------------------- | |||
namespace Minisat { | |||
static inline double cpuTime(void); // CPU-time in seconds. | |||
extern double memUsed(); // Memory in mega bytes (returns 0 for unsupported architectures). | |||
extern double memUsedPeak(); // Peak-memory in mega bytes (returns 0 for unsupported architectures). | |||
} | |||
//------------------------------------------------------------------------------------------------- | |||
// Implementation of inline functions: | |||
#if defined(_MSC_VER) || defined(__MINGW32__) | |||
#include <time.h> | |||
static inline double Minisat::cpuTime(void) { return (double)clock() / CLOCKS_PER_SEC; } | |||
#else | |||
#include <sys/time.h> | |||
#include <sys/resource.h> | |||
#include <unistd.h> | |||
static inline double Minisat::cpuTime(void) { | |||
struct rusage ru; | |||
getrusage(RUSAGE_SELF, &ru); | |||
return (double)ru.ru_utime.tv_sec + (double)ru.ru_utime.tv_usec / 1000000; } | |||
#endif | |||
#endif |