|
@ -0,0 +1,216 @@ |
|
|
|
|
|
from . import script |
|
|
|
|
|
from . import queries |
|
|
|
|
|
import dimod |
|
|
|
|
|
import random |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
|
|
|
|
|
|
from tqdm import tqdm |
|
|
|
|
|
|
|
|
|
|
|
def extract_wmis_qpu_results(): |
|
|
|
|
|
edb = script.connect_to_experimetns_db() |
|
|
|
|
|
edb_cursor = edb.cursor() |
|
|
|
|
|
|
|
|
|
|
|
idb = script.connect_to_instance_pool() |
|
|
|
|
|
|
|
|
|
|
|
scope = input("scope: ") |
|
|
|
|
|
result_collection = input("result collection: ") |
|
|
|
|
|
|
|
|
|
|
|
table_name = input("table name: ") |
|
|
|
|
|
|
|
|
|
|
|
q = queries.WMIS_result_scope_query_raw(idb) |
|
|
|
|
|
q.query(scope, result_collection) |
|
|
|
|
|
|
|
|
|
|
|
insert_row = ("INSERT INTO {} " |
|
|
|
|
|
"(result_id, " |
|
|
|
|
|
" run, " |
|
|
|
|
|
" instance_id, " |
|
|
|
|
|
" number_of_found_assignments, " |
|
|
|
|
|
" chain_break_fraction, " |
|
|
|
|
|
" num_occurrences, " |
|
|
|
|
|
" energy, " |
|
|
|
|
|
" satisfiable, " |
|
|
|
|
|
" anneal_time, " |
|
|
|
|
|
" energy_reach, " |
|
|
|
|
|
" sample_size) " |
|
|
|
|
|
"VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) ").format(table_name) |
|
|
|
|
|
|
|
|
|
|
|
run = int(input("run: ")) |
|
|
|
|
|
|
|
|
|
|
|
for result in tqdm(q): |
|
|
|
|
|
if result["run"] == run: |
|
|
|
|
|
sample_set = queries.read_raw_wmis_sample_set(result["data"]) |
|
|
|
|
|
|
|
|
|
|
|
data = script.analyze_wmis_sample(sample_set.first) |
|
|
|
|
|
|
|
|
|
|
|
sat = queries.get_instance_by_id(idb["instances"], result["instance"]) |
|
|
|
|
|
|
|
|
|
|
|
model = script.majority_vote_sample(sample_set.first.sample) |
|
|
|
|
|
|
|
|
|
|
|
isSatisfiable = sat.checkAssignment(model) |
|
|
|
|
|
|
|
|
|
|
|
anneal_time = result["data"]["info"]["timing"]["qpu_anneal_time_per_sample"] |
|
|
|
|
|
|
|
|
|
|
|
energy_reach = abs(sample_set.record["energy"].max() - |
|
|
|
|
|
sample_set.record["energy"].min()) |
|
|
|
|
|
|
|
|
|
|
|
sample_size = np.sum(sample_set.record["num_occurrences"]) |
|
|
|
|
|
|
|
|
|
|
|
edb_cursor.execute(insert_row, (str(result["_id"]), |
|
|
|
|
|
int(result["run"]), |
|
|
|
|
|
str(result["instance"]), |
|
|
|
|
|
int(data["number_of_assignments"]), |
|
|
|
|
|
float(data["chain_break_fraction"]), |
|
|
|
|
|
int(data["num_occurrences"]), |
|
|
|
|
|
int(data["energy"]), |
|
|
|
|
|
isSatisfiable, |
|
|
|
|
|
int(anneal_time), |
|
|
|
|
|
int(energy_reach), |
|
|
|
|
|
int(sample_size))) |
|
|
|
|
|
|
|
|
|
|
|
edb.commit() |
|
|
|
|
|
edb_cursor.close() |
|
|
|
|
|
edb.close() |
|
|
|
|
|
|
|
|
|
|
|
def extract_wmis_2_qpu_results(): |
|
|
|
|
|
edb = script.connect_to_experimetns_db() |
|
|
|
|
|
edb_cursor = edb.cursor() |
|
|
|
|
|
|
|
|
|
|
|
idb = script.connect_to_instance_pool() |
|
|
|
|
|
|
|
|
|
|
|
scope = input("scope: ") |
|
|
|
|
|
result_collection = input("result collection: ") |
|
|
|
|
|
table_name = input("table name: ") |
|
|
|
|
|
|
|
|
|
|
|
q = queries.WMIS_result_scope_query_raw(idb) |
|
|
|
|
|
q.query(scope, result_collection) |
|
|
|
|
|
|
|
|
|
|
|
insert_row = ("INSERT INTO {} " |
|
|
|
|
|
"(result_id, " |
|
|
|
|
|
" run, " |
|
|
|
|
|
" instance_id, " |
|
|
|
|
|
" chain_break_fraction, " |
|
|
|
|
|
" num_occurrences, " |
|
|
|
|
|
" energy, " |
|
|
|
|
|
" satisfiable, " |
|
|
|
|
|
" anneal_time, " |
|
|
|
|
|
" energy_reach, " |
|
|
|
|
|
" sample_size) " |
|
|
|
|
|
"VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) ").format(table_name) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
run = int(input("run: ")) |
|
|
|
|
|
|
|
|
|
|
|
for result in tqdm(q): |
|
|
|
|
|
if result["run"] == run: |
|
|
|
|
|
sample_set = queries.read_raw_primitive_ising_sample_set(result["data"]) |
|
|
|
|
|
|
|
|
|
|
|
data = script.analyze_wmis_sample(sample_set.first) |
|
|
|
|
|
|
|
|
|
|
|
sat = queries.get_instance_by_id(idb["instances"], result["instance"]) |
|
|
|
|
|
|
|
|
|
|
|
post_process_results = __evaluate_wmis_2_sample(sat, |
|
|
|
|
|
sample_set.first.sample) |
|
|
|
|
|
|
|
|
|
|
|
anneal_time = result["data"]["info"]["timing"]["qpu_anneal_time_per_sample"] |
|
|
|
|
|
|
|
|
|
|
|
energy_reach = abs(sample_set.record["energy"].max() - |
|
|
|
|
|
sample_set.record["energy"].min()) |
|
|
|
|
|
sample_size = np.sum(sample_set.record["num_occurrences"]) |
|
|
|
|
|
|
|
|
|
|
|
edb_cursor.execute(insert_row, (str(result["_id"]), |
|
|
|
|
|
int(result["run"]), |
|
|
|
|
|
str(result["instance"]), |
|
|
|
|
|
float(data["chain_break_fraction"]), |
|
|
|
|
|
int(data["num_occurrences"]), |
|
|
|
|
|
int(data["energy"]), |
|
|
|
|
|
bool(post_process_results["satisfiable"]), |
|
|
|
|
|
int(anneal_time), |
|
|
|
|
|
int(energy_reach), |
|
|
|
|
|
int(sample_size))) |
|
|
|
|
|
|
|
|
|
|
|
edb.commit() |
|
|
|
|
|
edb_cursor.close() |
|
|
|
|
|
edb.close() |
|
|
|
|
|
|
|
|
|
|
|
def __evaluate_wmis_2_sample(sat, sample): |
|
|
|
|
|
post_process_results = {} |
|
|
|
|
|
|
|
|
|
|
|
assignments = {} |
|
|
|
|
|
vars = set() |
|
|
|
|
|
|
|
|
|
|
|
for node, energy in sample.items(): |
|
|
|
|
|
if node[0] == "x": |
|
|
|
|
|
lit = int(node[1:]) |
|
|
|
|
|
|
|
|
|
|
|
vars.add(abs(lit)) |
|
|
|
|
|
|
|
|
|
|
|
assignments[lit] = energy |
|
|
|
|
|
|
|
|
|
|
|
model = [True for i in range(len(vars))] |
|
|
|
|
|
|
|
|
|
|
|
for var in vars: |
|
|
|
|
|
if var in assignments: |
|
|
|
|
|
model[var - 1] = True if assignments[var] == 1 else False |
|
|
|
|
|
elif -var in assignments: |
|
|
|
|
|
model[var - 1] = True if assignments[-var] == 0 else False |
|
|
|
|
|
|
|
|
|
|
|
post_process_results["satisfiable"] = sat.checkAssignment(model) |
|
|
|
|
|
|
|
|
|
|
|
return post_process_results |
|
|
|
|
|
|
|
|
|
|
|
def extract_minisat_results(): |
|
|
|
|
|
edb = script.connect_to_experimetns_db() |
|
|
|
|
|
edb_cursor = edb.cursor(); |
|
|
|
|
|
|
|
|
|
|
|
idb = script.connect_to_instance_pool() |
|
|
|
|
|
|
|
|
|
|
|
scope = input("scope: ") |
|
|
|
|
|
result_collection = input("result collection: ") |
|
|
|
|
|
table_name = input("table name: ") |
|
|
|
|
|
|
|
|
|
|
|
runs = queries.Minisat_run_scope_query_raw(idb) |
|
|
|
|
|
runs.query(scope, result_collection) |
|
|
|
|
|
|
|
|
|
|
|
insert_row = ("INSERT INTO {} " |
|
|
|
|
|
"(run_id, " |
|
|
|
|
|
" instance_id, " |
|
|
|
|
|
" satisfiable) " |
|
|
|
|
|
"VALUES (%s, %s, %s) ").format(table_name) |
|
|
|
|
|
|
|
|
|
|
|
for run in tqdm(runs): |
|
|
|
|
|
data = script.analyde_minisat_run(run) |
|
|
|
|
|
|
|
|
|
|
|
edb_cursor.execute(insert_row, (str(run["_id"]), |
|
|
|
|
|
str(run["instance"]), |
|
|
|
|
|
int(data["satisfiable"]))) |
|
|
|
|
|
|
|
|
|
|
|
edb.commit() |
|
|
|
|
|
edb_cursor.close() |
|
|
|
|
|
edb.close() |
|
|
|
|
|
|
|
|
|
|
|
def extract_instance_parameters(): |
|
|
|
|
|
edb = script.connect_to_experimetns_db() |
|
|
|
|
|
edb_cursor = edb.cursor() |
|
|
|
|
|
|
|
|
|
|
|
idb = script.connect_to_instance_pool() |
|
|
|
|
|
|
|
|
|
|
|
scope = input("scope: ") |
|
|
|
|
|
table_name = input("table name: ") |
|
|
|
|
|
|
|
|
|
|
|
instances = queries.Instance_scope_query(idb) |
|
|
|
|
|
instances.query(scope) |
|
|
|
|
|
|
|
|
|
|
|
insert_row = ("INSERT INTO {} " |
|
|
|
|
|
"(instance_id, " |
|
|
|
|
|
" number_of_clauses, " |
|
|
|
|
|
" number_of_variables) " |
|
|
|
|
|
"VALUES (%s, %s, %s)").format(table_name) |
|
|
|
|
|
|
|
|
|
|
|
for instance, instance_id in tqdm(instances): |
|
|
|
|
|
edb_cursor.execute(insert_row, (str(instance_id), |
|
|
|
|
|
int(instance.getNumberOfClauses()), |
|
|
|
|
|
int(instance.getNumberOfVariables()))) |
|
|
|
|
|
|
|
|
|
|
|
edb.commit() |
|
|
|
|
|
edb_cursor.close() |
|
|
|
|
|
edb.close() |