You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

168 lines
5.0 KiB

#!/usr/bin/env python3
import util.script as script
import util.queries as queries
import util.graph as graph
import networkx as nx
import dwave_networkx as dnx
from neal import SimulatedAnnealingSampler
import dimod
from dwave.system.composites import FixedEmbeddingComposite
from dwave.system.samplers import DWaveSampler
from tqdm import tqdm
__QUBO__ = 1
__ISING__ = 2
def main():
mode = __get_mode()
ising_qubo_collection = input("ising/qubo collection: ")
model_type = __get_model_type()
result_collection = input("result collection: ")
if mode == "SIMAN":
__run_siman(ising_qubo_collection, model_type, result_collection)
elif mode == "QPU":
__run_qpu(ising_qubo_collection, model_type, result_collection)
def __get_negation():
print("qubo_negation:")
print("(t)rue ")
print("(f)alse")
mode = input()
if mode == "t":
return True
else:
return False
def __get_mode():
print("choose mode:")
print("(1) simulated annealing")
print("(2) qpu")
mode = int(input())
if mode == 1:
return "SIMAN"
elif mode == 2:
return "QPU"
def __get_model_type():
print("model types:")
print("(q) qubo")
print("(i) ising")
model_type = input("choose: ")
if model_type == "q":
return __QUBO__
if model_type == "i":
return __ISING__
def __run_siman(ising_qubo_collection, model_type, result_collection):
db = script.connect_to_instance_pool()
target_graph = dnx.chimera_graph(16, 16, 4)
target_graph_id = queries.get_id_of_solver_graph(db["solver_graphs"],
nx.node_link_data(target_graph))
solver_input_query = __get_solver_input_query(db,
target_graph_id,
ising_qubo_collection)
base_sampler = SimulatedAnnealingSampler()
chimera_sampler = dimod.StructureComposite(base_sampler,
target_graph.nodes(),
target_graph.edges())
__run_on_scope(solver_input_query,
db[result_collection],
chimera_sampler,
model_type=model_type,
negate=__get_negation())
def __run_qpu(ising_qubo_collection, model_type, result_collection):
db = script.connect_to_instance_pool()
base_solver = DWaveSampler()
solver_graph_id = __get_solver_graph_id(db, base_solver.solver)
solver_input_query = __get_solver_input_query(db,
solver_graph_id,
ising_qubo_collection)
solver_args = {}
solver_args["annealing_time"] = int(input("annealing time (in us): "))
solver_args["num_reads"] = int(input("number of reads per sample: "))
__run_on_scope(solver_input_query,
db[result_collection],
base_solver,
model_type,
negate=__get_negation(),
solver_args=solver_args)
def __get_solver_graph_id(db, solver):
solver_graph = graph.create_qpu_solver_nxgraph(solver)
return queries.get_id_of_solver_graph(db["solver_graphs"],
nx.node_link_data(solver_graph))
def __get_solver_input_query(db, solver_graph_id, ising_qubo_collection):
scope = input("scope: ")
solver_input_query = queries.WMIS_solver_input_scope_query(db, ising_qubo_collection)
solver_input_query.query(scope, solver_graph_id)
return solver_input_query
def __run_on_scope(solver_input_query,
result_collection,
base_solver,
model_type,
negate=False,
solver_args={}):
run = int(input("save as run (numbered): "))
for solver_input in tqdm(solver_input_query):
embedding = solver_input["embeddings"][0]
qubo = __negate_qubo(solver_input["qubo"]) if negate else solver_input["qubo"]
solver = FixedEmbeddingComposite(base_solver, embedding)
res = None
if model_type == __QUBO__:
res = solver.sample_qubo(qubo, **solver_args)
elif model_type == __ISING__:
h, J = graph.split_ising(qubo)
res = solver.sample_ising(h, J, **solver_args)
script.save_sample_set(result_collection,
res,
solver_input,
emb_list_index = 0,
run = run)
def __negate_qubo(qubo):
negative_qubo = {}
for coupler, energy in qubo.items():
negative_qubo[coupler] = -1 * energy
return negative_qubo
if __name__ == "__main__":
main()