#!/usr/bin/env python3
|
|
|
|
from util.kSAT import kSAT
|
|
import util.randomSAT as rand_sat
|
|
import util.SAT2QUBO as SAT2QUBO
|
|
import util.script as script
|
|
import util.queries as queries
|
|
import util.graph as graph
|
|
|
|
from dwave.system.composites import FixedEmbeddingComposite
|
|
import dimod
|
|
from neal import SimulatedAnnealingSampler
|
|
import minorminer
|
|
import networkx as nx
|
|
import dwave_networkx as dnx
|
|
import dwave.embedding
|
|
|
|
from dwave.cloud import Client
|
|
from dwave.cloud import Future
|
|
from dwave.system.samplers import DWaveSampler
|
|
|
|
from dwave_qbsolv import QBSolv
|
|
|
|
import numpy as np
|
|
import random
|
|
|
|
from tqdm import tqdm
|
|
|
|
def main():
|
|
#__wmis()
|
|
#__pqubo()
|
|
__wmis3()
|
|
|
|
|
|
def __qubo_to_nx_graph(qubo):
|
|
graph = nx.Graph()
|
|
|
|
for coupler, energy in qubo.items():
|
|
if coupler[0] != coupler[1]:
|
|
graph.add_edge(coupler[0], coupler[1], weight=energy)
|
|
|
|
return graph
|
|
|
|
def __wmis2():
|
|
db = script.connect_to_instance_pool("dbc")
|
|
target_graph = dnx.chimera_graph(16, 16, 4)
|
|
target_graph_id = queries.get_id_of_solver_graph(db["solver_graphs"],
|
|
nx.node_link_data(target_graph))
|
|
instance_id = "5c9ccb998c6fe61926458351"
|
|
qubo, wmis_id = queries.load_WMIS_qubo_of_instance(db["wmis_qubos"], instance_id)
|
|
|
|
emb = queries.load_embedding(db["embeddings"], wmis_id, target_graph_id)
|
|
|
|
chimera_sampler = dimod.StructureComposite(SimulatedAnnealingSampler(),
|
|
target_graph.nodes(),
|
|
target_graph.edges())
|
|
|
|
sampler = FixedEmbeddingComposite(chimera_sampler, emb)
|
|
|
|
res = sampler.sample_qubo(__negate_qubo(qubo))
|
|
|
|
print(res.first)
|
|
|
|
def __wmis3():
|
|
db = script.connect_to_instance_pool()
|
|
target_graph = dnx.chimera_graph(16, 16, 4)
|
|
target_graph_id = queries.get_id_of_solver_graph(db["solver_graphs"],
|
|
nx.node_link_data(target_graph))
|
|
|
|
solver_input_query = queries.WMIS_solver_input_scope_query(db)
|
|
solver_input_query.query("c42_vLogistic_6", target_graph_id)
|
|
|
|
base_sampler = SimulatedAnnealingSampler()
|
|
#base_sampler = QBSolv()
|
|
chimera_sampler = dimod.StructureComposite(base_sampler,
|
|
target_graph.nodes(),
|
|
target_graph.edges())
|
|
|
|
for solver_input in tqdm(solver_input_query):
|
|
|
|
sampler = FixedEmbeddingComposite(chimera_sampler, solver_input["embeddings"][0])
|
|
|
|
#res = sampler.sample_qubo(solver_input["qubo"], solver_limit=2048)
|
|
res = sampler.sample_qubo(solver_input["qubo"])
|
|
|
|
script.save_result(db["wmis_siman_results"],
|
|
res,
|
|
solver_input,
|
|
0,
|
|
1)
|
|
|
|
def __wmis_qpu():
|
|
db = script.connect_to_instance_pool()
|
|
|
|
base_solver = DWaveSampler()
|
|
|
|
solver_graph = graph.create_qpu_solver_nxgraph(base_solver)
|
|
solver_graph_id = queries.get_id_of_solver_graph(db["solver_graphs"],
|
|
nx.node_link_data(solver_graph))
|
|
|
|
solver_input_query = queries.WMIS_solver_input_scope_query(db)
|
|
solver_input_query.query("c42_vLogistic_6", solver_graph_id)
|
|
|
|
for solver_input in tqdm(solver_input_query):
|
|
|
|
embedding = solver_input["embeddings"][0]
|
|
qubo = solver_input["qubo"]
|
|
|
|
solver = FixedEmbeddingComposite(base_solver, embedding)
|
|
|
|
res = solver.sample_qubo(qubo, annealing_time=5)
|
|
|
|
script.save_result(db["wmis_qpu_results"],
|
|
res,
|
|
solver_input,
|
|
emb_list_index = 0,
|
|
run = 1)
|
|
|
|
|
|
|
|
def __wmis():
|
|
sat = rand_sat.generateRandomKSAT(25, 6, 3)
|
|
qubo = __negate_qubo(SAT2QUBO.WMISdictQUBO(sat))
|
|
#qubo = SAT2QUBO.WMISdictQUBO(sat)
|
|
nx_qubo = __qubo_to_nx_graph(qubo)
|
|
|
|
target_graph = dnx.chimera_graph(16, 16, 4)
|
|
|
|
emb = minorminer.find_embedding(nx_qubo.edges(),
|
|
target_graph.edges(),
|
|
return_overlap=True)
|
|
|
|
if emb[1] != 1:
|
|
print("no embedding found")
|
|
return
|
|
|
|
print(emb[0])
|
|
|
|
chimera_sampler = dimod.StructureComposite(SimulatedAnnealingSampler(),
|
|
target_graph.nodes(),
|
|
target_graph.edges())
|
|
|
|
|
|
|
|
sampler = FixedEmbeddingComposite(chimera_sampler, emb[0])
|
|
|
|
|
|
res = sampler.sample_qubo(qubo)
|
|
#res = SimulatedAnnealingSampler().sample_qubo(qubo)
|
|
|
|
#dwave.embedding.chain_breaks.majority_vote(res, emb[0])
|
|
|
|
first = res.first
|
|
|
|
print("chain_break_fraction={}".format(first.chain_break_fraction))
|
|
for lit, spin in first.sample.items():
|
|
print(lit, spin)
|
|
print("true count: {}".format(np.count_nonzero(list(first.sample.values()))))
|
|
|
|
assignments = {}
|
|
|
|
for coupler, energy in first.sample.items():
|
|
|
|
var = abs(coupler[1])
|
|
|
|
if var not in assignments:
|
|
assignments[var] = {"all": []}
|
|
|
|
if energy == 1:
|
|
assignments[var]["all"].append(1 if coupler[1] > 0 else 0)
|
|
|
|
__majority_vote(assignments)
|
|
|
|
#for var, a in assignments.items():
|
|
##print(var, np.sort(a["all"]), __majority_percentage(a["all"]))
|
|
#print(var, a)
|
|
final = __extract_assignment(assignments)
|
|
print(final)
|
|
print("satisfies sat: {}".format(sat.checkAssignment(final)))
|
|
|
|
def __optimize_assignment(sat, assignment, consistencies):
|
|
rnd = random.Random()
|
|
|
|
max_steps = 4000
|
|
steps = 0
|
|
|
|
while not sat.checkAssignment(assignment) and steps < max_steps:
|
|
steps += 1
|
|
|
|
for i in range(len(assignment)):
|
|
if 0.9 * rnd.random() > consistencies[i]:
|
|
assignment[i] = (1 + assignment[i]) % 2
|
|
consistencies[i] = 1 - consistencies[i]
|
|
|
|
print("steps: {}".format(steps))
|
|
|
|
return assignment
|
|
|
|
def __random_assignment(number_of_variables):
|
|
rnd = random.Random()
|
|
assignment = [rnd.choice([0, 1]) for i in range(number_of_variables)]
|
|
consistencies = [0.5 for i in range(number_of_variables)]
|
|
|
|
return assignment, consistencies
|
|
|
|
|
|
def __extract_assignment(assignments):
|
|
assignment = [0 for i in range(len(assignments))]
|
|
|
|
for var, a in assignments.items():
|
|
assignment[var - 1] = a["major"]
|
|
|
|
return assignment
|
|
|
|
def __extract_consistencies(assignments) :
|
|
consistencies = [0.0 for i in range(len(assignments))]
|
|
|
|
for var, a in assignments.items():
|
|
consistencies[var - 1] = a["consistency"]
|
|
|
|
return consistencies
|
|
|
|
def __majority_vote(assignments):
|
|
for var, a in assignments.items():
|
|
assignments[var]["major"] = 1 if __true_percentage(a["all"]) >= 0.5 else 0
|
|
assignments[var]["consistency"] = __majority_percentage(a["all"])
|
|
|
|
def __true_percentage(a):
|
|
if len(a) == 0:
|
|
return 0
|
|
|
|
return np.count_nonzero(a) / len(a)
|
|
|
|
def __majority_percentage(a):
|
|
true_perc = __true_percentage(a)
|
|
|
|
return true_perc if true_perc >= 0.5 else 1 - true_perc
|
|
|
|
def __pqubo():
|
|
sat = rand_sat.generateRandomKSAT(25, 6, 3)
|
|
ising = SAT2QUBO.primitiveQUBO(sat)
|
|
nx_qubo = __qubo_to_nx_graph(ising)
|
|
|
|
target_graph = dnx.chimera_graph(16, 16, 4)
|
|
|
|
emb = minorminer.find_embedding(nx_qubo.edges(),
|
|
target_graph.edges(),
|
|
return_overlap=True)
|
|
|
|
if emb[1] != 1:
|
|
print("no embedding found")
|
|
return
|
|
|
|
chimera_sampler = dimod.StructureComposite(SimulatedAnnealingSampler(),
|
|
target_graph.nodes(),
|
|
target_graph.edges())
|
|
|
|
sampler = FixedEmbeddingComposite(chimera_sampler, emb[0])
|
|
|
|
h, J = __split_ising(ising)
|
|
|
|
res = sampler.sample_ising(h, J)
|
|
#res = QBSolv().sample_qubo(qubo, find_max=True)
|
|
|
|
print(res.first)
|
|
|
|
def __split_ising(ising):
|
|
h = {}
|
|
J = {}
|
|
|
|
for coupler, energy in ising.items():
|
|
if coupler[0] == coupler[1]:
|
|
h[coupler[0]] = energy
|
|
else:
|
|
J[coupler] = energy
|
|
|
|
return h, J
|
|
|
|
|
|
def __negate_qubo(qubo):
|
|
negative_qubo = {}
|
|
|
|
for coupler, energy in qubo.items():
|
|
negative_qubo[coupler] = -1 * energy
|
|
|
|
return negative_qubo
|
|
|
|
if __name__ == "__main__":
|
|
main()
|