|
|
@ -0,0 +1,131 @@ |
|
|
|
library(reshape) |
|
|
|
library(tidyverse) |
|
|
|
library(ggforce) |
|
|
|
|
|
|
|
normalize_landscape <- function(landscape) { |
|
|
|
min_val <- min(landscape) |
|
|
|
max_val <- max(landscape) |
|
|
|
range_val <- max_val - min_val |
|
|
|
|
|
|
|
return((landscape - min_val) / range_val) |
|
|
|
} |
|
|
|
|
|
|
|
plot_landscape <- function(landscape) { |
|
|
|
p <- ggplot(data=melt(landscape), aes(x=X1, y=X2, z=value)) + |
|
|
|
geom_contour_filled() |
|
|
|
|
|
|
|
return(p) |
|
|
|
} |
|
|
|
|
|
|
|
init_population <- function(landscape, n) { |
|
|
|
|
|
|
|
population <- list() |
|
|
|
dims <- length(dim(landscape)) |
|
|
|
|
|
|
|
for(i in 1:n) { |
|
|
|
coords <- round(runif(dims, 0, 1) * dim(landscape)) |
|
|
|
sigmas <- rnorm(dims) |
|
|
|
|
|
|
|
population[[i]] <- matrix(c(coords, sigmas), ncol=2) |
|
|
|
} |
|
|
|
|
|
|
|
return(population) |
|
|
|
} |
|
|
|
|
|
|
|
next_generation <- function(landscape, population) { |
|
|
|
return(map(population, function(indiv) { |
|
|
|
return(select_indiv(landscape, list(indiv, create_child(indiv)))) |
|
|
|
})) |
|
|
|
} |
|
|
|
|
|
|
|
select_indiv <- function(landscape, indivs) { |
|
|
|
return(reduce(indivs, function(a, b) { |
|
|
|
if(eval_indiv(landscape, a) >= eval_indiv(landscape, b)) { |
|
|
|
return(a) |
|
|
|
} |
|
|
|
|
|
|
|
return(b) |
|
|
|
})) |
|
|
|
} |
|
|
|
|
|
|
|
eval_indiv <- function(landscape, indiv) { |
|
|
|
dims <- dim(landscape) |
|
|
|
|
|
|
|
x <- indiv[1,1] |
|
|
|
y <- indiv[2, 1] |
|
|
|
|
|
|
|
if(x > dims[1] || y > dims[2] || x < 1 || y < 1) { |
|
|
|
return(-1) |
|
|
|
} |
|
|
|
|
|
|
|
return(landscape[indiv[1,1], indiv[2,1]]) |
|
|
|
} |
|
|
|
|
|
|
|
create_child <- function(parent) { |
|
|
|
new_sigmas <- mutate_sigmas(parent[,2]) |
|
|
|
new_coords <- mutate_coords(parent[,1], new_sigmas) |
|
|
|
|
|
|
|
return(matrix(c(new_coords, new_sigmas), ncol=2)) |
|
|
|
} |
|
|
|
|
|
|
|
mutate_sigmas <- function(sigmas) { |
|
|
|
global_rate <- 1 / sqrt(2 * length(sigmas)) |
|
|
|
local_rate <- 1 / (2 * sqrt(length(sigmas))) |
|
|
|
|
|
|
|
global_step <- global_rate * rnorm(1) |
|
|
|
|
|
|
|
return(map_dbl(sigmas, function(s) s * exp(global_step + local_rate * rnorm(1)))) |
|
|
|
} |
|
|
|
|
|
|
|
mutate_coords <- function(coords, sigmas) { |
|
|
|
return(imap_dbl(coords, function(x, i) x + sigmas[i] * rnorm(1))) |
|
|
|
} |
|
|
|
|
|
|
|
experiment <- function(landscape, population, gens) { |
|
|
|
df <- population_to_df(landscape, population, 0) |
|
|
|
|
|
|
|
for(g in 1:gens) { |
|
|
|
population <- next_generation(landscape, population) |
|
|
|
|
|
|
|
df <- rbind(df, population_to_df(landscape, population, g)) |
|
|
|
} |
|
|
|
|
|
|
|
return(df) |
|
|
|
} |
|
|
|
|
|
|
|
population_to_df <- function(landscape, population, gen) { |
|
|
|
df <- reduce(imap(population, function(indv, i) indiv_to_df(landscape, indv, i)), rbind) |
|
|
|
df["generation"] <- gen |
|
|
|
|
|
|
|
return(df) |
|
|
|
} |
|
|
|
|
|
|
|
indiv_to_df <- function(landscape, indiv, index) { |
|
|
|
return(data.frame(x=indiv[1,1], y=indiv[2,1], |
|
|
|
sx=indiv[1, 2], sy=indiv[2,2], |
|
|
|
individual=index, value=eval_indiv(landscape, indiv))) |
|
|
|
} |
|
|
|
|
|
|
|
plot_generation <- function(landscape, df) { |
|
|
|
p <-ggplot(data=df) + |
|
|
|
geom_contour_filled(data=melt(landscape), aes(x=X1, y=X2, z=value)) + |
|
|
|
geom_point(aes(x=x, y=y)) + |
|
|
|
geom_ellipse(aes(x0=x, y0=y, a=sx, b=sy, angle=0)) |
|
|
|
|
|
|
|
return(p) |
|
|
|
} |
|
|
|
|
|
|
|
plot_experiment <- function(landscape, df, filename) { |
|
|
|
pdf(file=filename, onefile=TRUE) |
|
|
|
|
|
|
|
for(g in unique(df$generation)) { |
|
|
|
tmp_df <- df[df$generation == g,] |
|
|
|
|
|
|
|
p <- plot <- plot_generation(landscape, tmp_df) |
|
|
|
|
|
|
|
print(p) |
|
|
|
} |
|
|
|
|
|
|
|
dev.off() |
|
|
|
} |
|
|
|
|