library(reshape) library(tidyverse) library(ggforce) normalize_landscape <- function(landscape) { min_val <- min(landscape) max_val <- max(landscape) range_val <- max_val - min_val return((landscape - min_val) / range_val) } plot_landscape <- function(landscape) { p <- ggplot(data=melt(landscape), aes(x=X1, y=X2, z=value)) + geom_contour_filled() return(p) } init_population <- function(landscape, n) { population <- list() dims <- length(dim(landscape)) for(i in 1:n) { coords <- round(runif(dims, 0, 1) * dim(landscape)) sigmas <- rnorm(dims) population[[i]] <- matrix(c(coords, sigmas), ncol=2) } return(population) } next_generation <- function(landscape, population) { return(map(population, function(indiv) { return(select_indiv(landscape, list(indiv, create_child(indiv)))) })) } select_indiv <- function(landscape, indivs) { return(reduce(indivs, function(a, b) { if(eval_indiv(landscape, a) >= eval_indiv(landscape, b)) { return(a) } return(b) })) } eval_indiv <- function(landscape, indiv) { dims <- dim(landscape) x <- indiv[1,1] y <- indiv[2, 1] if(x > dims[1] || y > dims[2] || x < 1 || y < 1) { return(-1) } return(landscape[indiv[1,1], indiv[2,1]]) } create_child <- function(parent) { new_sigmas <- mutate_sigmas(parent[,2]) new_coords <- mutate_coords(parent[,1], new_sigmas) return(matrix(c(new_coords, new_sigmas), ncol=2)) } mutate_sigmas <- function(sigmas) { global_rate <- 1 / sqrt(2 * length(sigmas)) local_rate <- 1 / (2 * sqrt(length(sigmas))) global_step <- global_rate * rnorm(1) return(map_dbl(sigmas, function(s) s * exp(global_step + local_rate * rnorm(1)))) } mutate_coords <- function(coords, sigmas) { return(imap_dbl(coords, function(x, i) x + sigmas[i] * rnorm(1))) } experiment <- function(landscape, population, gens) { df <- population_to_df(landscape, population, 0) for(g in 1:gens) { population <- next_generation(landscape, population) df <- rbind(df, population_to_df(landscape, population, g)) } return(df) } population_to_df <- function(landscape, population, gen) { df <- reduce(imap(population, function(indv, i) indiv_to_df(landscape, indv, i)), rbind) df["generation"] <- gen return(df) } indiv_to_df <- function(landscape, indiv, index) { return(data.frame(x=indiv[1,1], y=indiv[2,1], sx=indiv[1, 2], sy=indiv[2,2], individual=index, value=eval_indiv(landscape, indiv))) } plot_generation <- function(landscape, df) { p <-ggplot(data=df) + geom_contour_filled(data=melt(landscape), aes(x=X1, y=X2, z=value)) + geom_point(aes(x=x, y=y)) + geom_ellipse(aes(x0=x, y0=y, a=sx, b=sy, angle=0)) return(p) } plot_experiment <- function(landscape, df, filename) { pdf(file=filename, onefile=TRUE) for(g in unique(df$generation)) { tmp_df <- df[df$generation == g,] p <- plot <- plot_generation(landscape, tmp_df) print(p) } dev.off() }