source("linear_scaling.R")
|
|
library(ggplot2)
|
|
library(RColorBrewer)
|
|
|
|
fittrans.id <- function(popul) {
|
|
return(popul)
|
|
}
|
|
|
|
fittrans.linscale <- function(a, b) {
|
|
return(function(popul) {
|
|
popul[,2] = a * popul[,2] + b
|
|
|
|
return(popul)
|
|
})
|
|
}
|
|
|
|
select.fps <- function(popul) {
|
|
relfit <- linscale.relfitness(popul[,2])
|
|
|
|
filtr <- sample(popul[,1], length(popul[,1]), prob=relfit, replace=TRUE)
|
|
return(popul[filtr,])
|
|
}
|
|
|
|
ev.run <- function(popul, gen, selection, fittrans=fittrans.id) {
|
|
npopul <- length(popul)
|
|
|
|
namedpopul <- matrix(c(1:npopul, popul), ncol=2)
|
|
|
|
df = data.frame( gen = 0
|
|
,fitness = namedpopul[,2]
|
|
,ancestor = namedpopul[,1]
|
|
,relfit = linscale.relfitness(namedpopul[,2]))
|
|
|
|
for(g in 1:gen) {
|
|
namedpopul <- selection(fittrans(namedpopul))
|
|
|
|
df = rbind(df, data.frame( gen = g
|
|
,fitness = namedpopul[,2]
|
|
,ancestor = namedpopul[,1]
|
|
,relfit = linscale.relfitness(namedpopul[,2])))
|
|
}
|
|
|
|
return(df)
|
|
}
|
|
|
|
ev.plot <- function(df, filename) {
|
|
pdf(file=filename, onefile=TRUE)
|
|
|
|
|
|
for(g in unique(df$gen)) {
|
|
p <- ggplot(data=df[df$gen == g,], aes(x="", y=relfit, fill=factor(ancestor))) +
|
|
geom_bar(stat="identity", width=1) +
|
|
coord_polar("y", start=0) +
|
|
labs(x=NULL, y=NULL, fill="ancestor", title=sprintf("generation: %i", g))
|
|
|
|
print(p)
|
|
}
|
|
|
|
dev.off()
|
|
}
|
|
|
|
ev.animate <- function(df, filename) {
|
|
|
|
anim <- ggplot(data=df, aes(x="", y=relfit, fill=factor(ancestor))) +
|
|
geom_bar(stat="identity", width=1) +
|
|
coord_polar("y", start=0) +
|
|
labs(x=NULL, y=NULL, fill="ancestor", title="generation: {closest_state}") +
|
|
transition_states(gen)
|
|
|
|
anim_save(filename, animation=anim)
|
|
}
|