From 1cfbd1a34a0c176ef70affa6a220ec7189fa8cf3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Tom=20Kr=C3=BCger?= Date: Fri, 27 Jan 2023 18:18:59 +0100 Subject: [PATCH] measurements --- content.tex | 229 ++++++++++++++++++++++++++++++++++++++++++++++++++++ main.pdf | Bin 279781 -> 281643 bytes main.tex | 218 +------------------------------------------------ 3 files changed, 230 insertions(+), 217 deletions(-) create mode 100644 content.tex diff --git a/content.tex b/content.tex new file mode 100644 index 0000000..f0d0728 --- /dev/null +++ b/content.tex @@ -0,0 +1,229 @@ + +\section{A Simple Computational Model} +What are Qubits? That's usually the first question getting addressed in any introduction to quantum computing, for a good reason. If we want to construct a new computational model, we first need to define the most basic building block: a single \emph{bit} of information. In classical computer science, the decision on how to define this smallest building block of information seems quite straight forward. We just take the most basic logical fact: either something is \emph{true} or \emph{false}, either 1 or 0. We have a name for an object holding this information: a \textbf{Bit}. Let's envision a computational model based on logical gates. Such a gate has one or more inputs and an output, with each either being \emph{true} or \emph{false}. Now consider a bit $b$ and a gate $f : \{0, 1\} \to \{0, 1\}$. We have a \emph{bit} of information $b$ and can get another \emph{bit} of information $b' \coloneqq f(b)$. In a final third step, we introduce a timescale, which means that now our \emph{bit} of information is time dependent. It can have different values at different times. To make it easier, we choose a discrete timescale. Our Bit $b$ has a distinct value on each point on the timescale. A value of a bit can only be changed in between time steps, by applying a logical gate to it: +$$ +\begin{matrix} +\text{Bit} & b &\stackrel{f_1}{\to} &b &\stackrel{f_2}{\to} &\cdots &\to &b &\stackrel{f_k}{\to} &b \\ +\text{time} & t_0 &\to &t_1 &\to &\cdots &\to &t_{k-1} &\to &t_k \\ +\end{matrix} +$$ + +Of course, we need more than one bit of information, if we want to be able to perform meaningful computations. For this, we simply look at a list, vector or register of bits $\mathbf{b} \in \{0,1\}^n$ and modify our gates to be functions $f: \{0,1\}^n \to \{0,1\}^n$ mapping from bit vectors to bit vectors. + +Let's recap: We've now designed a computational model with just three components. +\begin{itemize} + \item A notion of Information: bits and registers. + \item A way of reasoning: logical gates. + \item A dimension to do the reasoning in: the timescale +\end{itemize} + +Notice how the system described above is fully deterministic. The state $\mathbf{b}_l$ of our system at time $t_l$ recursively defined by: +$$ +\mathbf{b}_l = \begin{cases} +f_l(\mathbf{b}_{l-1}) &\text{if} \quad l > 0 \\ +\mathbf{b}_0 &\text{otherwise} +\end{cases} +$$ +Or by the composition of all gate applications up to this point: $(f_l \circ f_{l-1} \circ \cdots \circ f_1)(\mathbf{b}_0)$. Actually, a composition of gates is also just another logical gate $F \coloneqq (f_l \circ f_{l-1} \circ \cdots \circ f_1) : \{0,1\}^n \to \{0,1\}^n$. If we are not interested in intermediate states, we can thus define our computation in the form of $\mathbf{b}_{\text{out}} \coloneqq F(\mathbf{b}_{\text{in}})`$, with $`F: \{0,1\}^n \to \{0,1\}^n$. + +\section{A Bit of Randomness} +\label{sec:probabilistic_model} + +\subsection{Single Bits in Superposition} +\label{sec:oneBitInSuperposition} +Many real world problems are believed to not be efficiently solvable on fully deterministic computers like the model described above (if $\mathbf{P} \neq \mathbf{NP}$). Fortunately, it turns out that if we allow for some randomness in our algorithms, we're often able to efficiently find solutions for such hard problems with sufficiently large success probabilities. Often times, the error probabilities can even be made exponentially small. For this reason, we also want to introduce randomness into our model. Algorithms or computational models harnessing the power of randomness are usually called \emph{probabilistic}. + +Again, we start with simple one bit systems. Later, we'll see how to expand the following methods to full bit vectors/registers. In the deterministic single bit model above, the state transition of a bit $b$ in step $t$ is defined by $f_t(b) \in \{0,1\}$. Now, the transition function (or gate) is simply allowed to flip an unfair coin and either output 0 or 1 for heads or tails respectively. Of course, the state of $b$ prior to the transition should have an effect on the computation. That is, why we allow different (unfair) coins for either $b = 0$ or $b = 1$. To distinguish between deterministic and probabilistic transition functions, we will denote the latter by $\ptrans(b) \in \{0,1\}$. Or to reformulate this idea: Depending on the value of $b$, the output of $\ptrans(b)$ follows one of two Bernoulli trials. There are 4 possible transitions with probabilities $p_{00}$, $p_{01}$, $p_{10}$ and $p_{11}$, where $p_{ij}$ is the probability of $b$ transitioning form $i$ to $j$. Obviously, $\sum_j p_{ij} = 1$ always needs to be satisfied. +$$ +\begin{aligned} + p_{00} \coloneqq P(\ptrans(b) = 0 \:|\: b = 0) \\ + p_{01} \coloneqq P(\ptrans(b) = 1 \:|\: b = 0) \\ + p_{10} \coloneqq P(\ptrans(b) = 0 \:|\: b = 1) \\ + p_{11} \coloneqq P(\ptrans(b) = 1 \:|\: b = 1) \\ +\end{aligned} +$$ +Note that we regain our deterministic transition function $f$ from $\ptrans$, if we restrict the probabilities: $p_{00}, p_{10} \in \{0,1\}$. At this point, we can randomize our computation from above as follows: +$$ +\begin{matrix} +\text{Bit} & b &\stackrel{\ptrans_1}{\to} &b &\stackrel{\ptrans_2}{\to} &\cdots &\to &b &\stackrel{\ptrans_k}{\to} &b \\ +\text{time} & t_0 &\to &t_1 &\to &\cdots &\to &t_{k-1} &\to &t_k \\ +\end{matrix} +$$ +Let's have a look at the state of $b$ after the first transition. In the deterministic model, we know with certainty that at this point in time, $b$ will have the value $f_1(b)$. In a probabilistic model, we can not predict the value of $b$ at time $t_1$ with 100\% certainty. In the terminology of probability theory, a probabilistic state transition or even the whole computation would be an \emph{experiment} and the value of bit $b$ at time $t$ would be described by a \emph{random variable} $X_t$. Random variables are defined to take a value out of a set of predefined value options $\Omega = \{\omega_1, \dots, \omega_n\}$ with certain probabilities $p_1,\dots,p_n$ for each value. Only after we perform the experiment and \emph{observe} its outcome, we get a specific value $x_t$ of the random variable $X_t$. We say that $x_t$ is a \emph{random sample} or realization of $X_t$. If we don't want to or can't sample (perform) the experiment, we still could compute the \emph{expected value} $E(X_t) = \sum_i p_i\omega_i$ (if $\Omega$ mathematically allows for such operations). + +Let's return to our example: Just as in the deterministic case we would like to predict the state of $b$ after the transition $\ptrans_t$. For this we want to calculate the expected state of b at time $t$. Let $p^t_{ij}$ be the transition probabilities of $\ptrans_t$, furthermore $p^t_{b=x}$ denotes the probability of $b$ being in state $x$ at time $t$. Now we have: +\begin{gather} + E\parens*{\ptrans_t(b)} = p^t_{b=0} \cdot \mathbf{0} + p^t_{p=1} \cdot \mathbf{1} \label{eq:exp_state_single_bit}\\ +p^t_{b=x} = \begin{cases} + p^t_{0x} \cdot p^{t-1}_{b=0} + p^t_{1x} \cdot p^{t-1}_{b=1} & ,t > 0 \\ + 0, 1 & \text{otherwise} +\end{cases} +\end{gather} +It is important to note, that $\mathbf{0}$ and $\mathbf{1}$ in \cref{eq:exp_state_single_bit} are not the scalar values of $b$. They define abstract objects denoting the fact that $b$ is in state $0$ or $1$, so they are just arbitrary labels. For instance, same states could also be labeled $\{\mathbf{T}, \mathbf{F}\}$ or $\{\top, \bot\}$. But if $\mathbf{0}$ and $\mathbf{1}$ are some kind of abstract object and not scalar value, how can \cref{eq:exp_state_single_bit} be evaluated? As of now it can't. Later we will define representations of these abstract stats, which are closed under addition and scalar multiplication, making \cref{eq:exp_state_single_bit} also (a representation of) an abstract state. + +From \cref{eq:exp_state_single_bit}, we will now derive a standard form of our random bit $b$. We don't view $b$ as being either in state $\mathbf{0}$ OR $\mathbf{1}$ anymore. From now on, we think of $b$ as being in $\mathbf{0}$ AND $\mathbf{1}$ simultaneously with certain probabilities $p_{b=0}$ and $p_{b=1}$, The one bit system $b$ is in a \emph{superposition} of two \emph{basis states} $\mathbf{0}$ and $\mathbf{1}$: +$$ +b = p_0 \mathbf{0} + p_1 \mathbf{1} \quad , p_0 + p_1 = 1 +$$ +Until now, we have not given an explicit definition of the transition function $\ptrans$, apart from describing its effect. This is partly the case because we were lacking a formalism to describe uncertain states, so there was no direct way to describe the output of $\ptrans\parens{b}$. The other big problem would have been the question of how to handle an uncertain input state. Building on the superposition formalism $\ptrans\parens*{b}$ can be defined as a linear function: +\begin{align*} + \ptrans(b) &= \ptrans\parens*{p_0 \mathbf{0} + p_1 \mathbf{1}} \\ + &= p_0\ptrans(\mathbf{0}) + p_1\ptrans(\mathbf{1}) \\ + &= p_0\parens*{p_{00}\mathbf{0} + p_{01}\mathbf{1}} + p_1\parens*{p_{10}\mathbf{0} + p_{11}\mathbf{1}} \\ + &= \underbrace{\parens*{p_0 p_{00} + p_1 p_{10}}}_{\eqqcolon p'_0}\mathbf{0} + + \underbrace{\parens*{p_0 p_{01} + p_1 p_{11}}}_{\eqqcolon p'_1}\mathbf{1} \\ +\end{align*} +A simple calculation verifies that +\begin{align*} + p'_0 + p'_1 &= \parens*{p_0 p_{00} + p_1 p_{10}} + \parens*{p_0 p_{01} + p_1 p_{11}} \\ + &= p_0\underbrace{\parens*{p_{00} + p_{01}}}_{= 1} + p_1\underbrace{\parens*{p_{10} + p_{11}}}_{= 1} = p_0 + p_1 = 1 +\end{align*} +and thus $\ptrans$ preserves valid superpositions, which finally makes predictions of the full computation through all steps possible. In line with the fully deterministic model the state of $b$ at time $t$ can be described by: +\begin{equation} +\label{eq:deterministic_register_at_time_t} +\begin{aligned} + b_t &= \begin{cases} + \ptrans_t\parens*{b_{t-1}} &\text{if} \quad t > 0 \\ + b_0 \in \{\mathbf{0}, \mathbf{1}\} &\text{otherwise} \\ + \end{cases} \\ + &= \parens*{\ptrans_t \circ \ptrans_{t-1} \circ \cdots \circ \ptrans_1}(b_0) +\end{aligned} +\end{equation} + +\subsection{Collapsing Superpositions} +\label{sec:superposition} +Extending this formalism to bit registers is actually fairly straight forward. Systems can be in superposition of arbitrary many basis states. But first, it is time to talk a bit more about the concept of superposition. +\begin{definition}[Superposition of Probabilities] + If $\mathbf{E} \coloneqq \parensc*{E_1, E_2, \dots, E_n}$ is the set of all possible outcomes of an experiment, then a superposition of probable outcomes is defined by: + \begin{equation} + E \coloneqq \sum_{i=1}^n p_i E_i \quad \text{with}\:\: p_i = P\parens*{E_i} \:\text{and}\:\: \sum_{i=1}^n p_i = 1 + \end{equation} + The states (outcomes) in $\mathbf{E}$ are called basis states (outcomes). +\end{definition} + +As mentioned above, a superposition can not immediately be evaluated. It rather should be seen as a mathematical object holding incomplete knowledge about a certain property of some (stochastic) process, described by a random distribution $(p_i)_{i=1}^n$. Too actually evaluate a superposition, the missing information needs to be filled in by some kind of extra process e.g. performing an experiment, measuring an observable. After this extra information is filled in the property under consideration is fully known and the superposition \emph{collapses} to one of the actually realizable outcomes in $\mathbf{E}$. In this model a system can be in an uncertain state which only can be made concrete by some external influence like measuring an observable. This sounds quite abstract and especially the fact that a measurement could alter the state of a real physical system seems quite counterintuitive, but we will later see that this principle is actually grounded in reality. + +Let's consider the experiment of rolling a dice. Of course, for the observable \emph{number of eyes} the expected outcomes are $\mathbf{E} = \parensc{1, 2, \dots, 6}$. While the dice is still in the cup and in the state of being shaken number of eyes can not be reasonably determined, even if a transparent cup is being used. The dice is in a superposition $E = \sum_{i=1}^6 \frac{1}{6} \mathbf{i}$ of showing all numbers of eyes 1 to 6 with uniform probability $\frac{1}{6}$. In order to determine the number of eyes thrown, the dice needs to rest on a solid base, such that one side is evidently showing up. So by \emph{throwing the dice} we interfere with the system by stopping to shake the cup and placing the dice on a solid base (table). With the dice now laying on the table it is clearly showing only one number of eyes. The superposition collapsed! + +\begin{definition}[Collapse of Superposition] + A state in superposition of basis states $\mathbf{E} = \parensc*{E_1, E_2, \dots, E_n}$ can be evaluated by collapsing it on one of its basis states. This is done by a measuring operator + \begin{equation} + M_{\mathbf{E}}\parens*{\sum_{i=1}^n p_i E_i} \coloneqq E_i \quad\: \text{with probability}\:\: p_i + \end{equation} +\end{definition} + +\begin{remark} + The basis states are not unique. To see this, consider the experiment of rolling a dice. If the observable is \emph{the number of eyes} we have the basis states $\mathbf{E}_{\text{eye}} = \parensc*{\mathbf{i}}_{i=1}^6$. On the other hand, if the measurement is only supposed to distinguish between \emph{even or odd} numbers of eyes we have $\mathbf{E}_{\text{parity}} = \parensc*{\text{even}, \text{odd}}$. The corresponding measuring operators are $M_{\mathbf{E_{\text{eye}}}}$ and $M_{\mathbf{E_{\text{parity}}}}$. +\end{remark} + +\subsection{Bit Registers in Superposition} +Extending the probabilistic one-bit model from \cref{sec:oneBitInSuperposition} to bit registers is almost trivial given the definitions from \cref{sec:superposition}. A $n$-bit register can be in $N = 2^n$ possible states, giving rise to a superposition of $N$ basis states for probabilistic register states. +\begin{definition} + \label{def:nbitRegister} + The state of a $n$-bit register in a probabilistic computation is defined by a superposition of all possible basis states $\mathbf{B} = \parensc*{\mathbf{0}, \mathbf{1}}^n = \parensc*{\mathbf{0}, \mathbf{1}, \dots, \mathbf{N-1}}$. + \begin{equation} + \mathbf{b} \coloneqq \sum_{i=0}^{N-1} p_i \cdot \mathbf{i} \quad \:\text{with}\:\: P\parens*{\mathbf{b} = \mathbf{i}} = p_i + \end{equation} +\end{definition} +\begin{remark} + It should be noted that the number representation $\parensc*{\mathbf{i}}_{i=0}^{N-1}$ is defined as the bit string $\{\mathbf{0}, \mathbf{1}\}^n$ in a base of 10. So it is just a shorter label for the state of a $n$-bit register and NOT a scalar value. +\end{remark} +Similar to \cref{sec:oneBitInSuperposition} the transition function $\ptrans$ can be defined on its effect on basis states. For each transition the probabilities of transitioning from basis state $\mathbf{i}$ to basis state $\mathbf{j}$ must be defined. The mapping between states in superposition will then be defined linearly. +\begin{definition} + \label{def:probabilisticTransitionFunction} + Let $\mathbf{b} = \sum_{i=0}^{N-1} p_i \mathbf{i}$ be a $n$-bit register as defined in \cref{def:nbitRegister} and let $p_{\mathbf{ij}}$ be the probability of transitioning form basis state $\mathbf{i}$ to basis state $\mathbf{j}$, then the transition function is defined by: + \begin{equation} + \label{eq:ptrans_on_register} + \ptrans\parens*{\mathbf{b}} \coloneqq \sum_{i=0}^{N-1} p_i \ptrans(\mathbf{i}) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} p_i p_{ij} \mathbf{j} + \end{equation} +\end{definition} + +\begin{theorem} + \label{thm:superpositionsClosedUnderProbabilisticTransition} + A transition function as defined by \cref{def:probabilisticTransitionFunction} maps superposition to valid superpositions. +\end{theorem} +\begin{proof} + Let $\ptrans$ be a probabilistic transition function and let $\mathbf{b}$ a register state in superposition. By \cref{def:probabilisticTransitionFunction} we get $\ptrans(\mathbf{b}) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} p_i p_{ij} \mathbf{j}$ a simple reordering leads to + $$ + \ptrans(\mathbf{b}) = \sum_{j=0}^{N-1} \parens*{\sum_{i=0}^{N-1} p_i p_{ij}} \mathbf{j} + $$ + Obviously, $p_i p_{ij} = P\parens{\mathbf{b} = \mathbf{i}} P\parens{\ptrans(\mathbf{b}) = \mathbf{j} \:|\: \mathbf{b} = \mathbf{i}}$. It follows directly from the law of total probability that $\sum_{j=0}^{N-1}\sum_{i=0}^{N-1} p_i p_{ij} = \sum_{j=0}^{N-1} P\parens{\ptrans(\mathbf{b}) = \mathbf{j}} = 1$ +\end{proof} +A direct consequence of \cref{thm:superpositionsClosedUnderProbabilisticTransition} is that the space of probabilistic transition functions is also closed under composition. In accordance to \cref{eq:deterministic_register_at_time_t} the state of a register $\mathbf{b}$ in a probabilistic computation at time $t$ can be described by: +\begin{equation}\begin{aligned} + \mathbf{b}_t &= \begin{cases} + \ptrans_t\parens*{\mathbf{b}_{t-1}} &\text{if}\:\: t > 0 \\ + \mathbf{b}_0 \in \parensc*{\mathbf{0}, \mathbf{1}}^N &\text{otherwise} + \end{cases} \\ + &= \parens*{\ptrans_t \circ \ptrans_{t-1} \circ \cdots \circ \ptrans_1}(\mathbf{b}_0) +\end{aligned}\end{equation} + +\section{Introducing: Linear Algebra} +The definitions of \cref{sec:probabilistic_model} fully describe a probabilistic computational model. Unfortunately, working with them can be quite cumbersome. This section will introduce an algebraic apparatus based on the definitions from above, with many helpful tools to describe computations and state evolutions. As some terminology and especially the linear properties of \cref{def:probabilisticTransitionFunction} already suggest the mathematical framework of choice will be linear algebra. Let's start by assessing the components of the model described above. We have: +\begin{itemize} + \item States (in superposition) + \item State transitions + \item Measurements (collapse of superposition) +\end{itemize} +As it turns out, all three components and their interactions can be expressed in the language of linear algebra. Readers familiar with that field of mathematics probably already noticed that $\ptrans$ is a linear function and the space of states in superposition looks a lot like a vector space. + +\subsection{The State Space} +The defining property of a superposition is the probability distribution of its basis states. Given an enumeration all basis states the superposition is fully defined by the list of probabilities $\parens{p_0, p_1, \dots, p_{N-1}}$. +\begin{definition}[State Spaces of Probabilistic Computations] + Given a state basis $\mathbf{B}$ of a $n$-bit register, the state space of probabilistic computations on this register is defined as: + \begin{equation*} + \mathbf{B}^n \coloneqq \parensc*{\mathbf{b} = \sum_{i=0}^{N-1} p_i \mathbf{i} \:\middle|\: p_i \in \R_+ \:,\: \sum_{i=0}^{N-1} p_i = 1} + \end{equation*} +\end{definition} + +\begin{definition} + The coordinate map is a linear function $\Psi_{\mathbf{B}} : \mathbf{B}^{n} \to \R^N$ mapping the state space to $\R^N$: + \begin{equation*} + \forall \mathbf{b} \in \mathbf{B}^n :\quad \Psi_{\mathbf{B}}\parens{\mathbf{b}} = \parens{p_0, p_1, \dots, p_{N-1}}^T = \sum_{i=1}^N p_i \mathbf{e}_i + \end{equation*} + Often $\Psi_{\mathbf{B}}(\mathbf{b})$ is called the coordinate vector of $\mathbf{b}$ with respect to the basis $\mathbf{B}$. +\end{definition} + +\begin{lemma} + \label{thm:state_space_unit_sphere_surface_isomorphism} + The state space of probabilistic computations is isomorphic to the surface of the unit sphere in the first quadrant of $\R^N$. + \begin{equation*} + \mathbf{B}^n \cong \parensc*{\mathbf{v} \in \R_+^N \:\middle|\: \norm{\mathbf{v}} = 1} + \end{equation*} +\end{lemma} + +\begin{proof} + For an arbitrary state $\mathbf{b}$ the coordinate vector $\Psi_{\mathbf{B}}(b) = \mathbf{v}$ is the direction of a ray in the first quadrant of $\R^N$ starting from the origin. Rescaling $\mathbf{v}$ results in the point where this ray intersects the unit sphere $\varphi(\mathbf{v}) = \frac{\mathbf{v}}{\norm{\mathbf{v}}} = \mathbf{v}'$ which can be inverted by $\varphi^{-1}(\mathbf{v}') = \frac{\mathbf{v}'}{\norm{\mathbf{v}'}_1} = \mathbf{v}$. Thus, $\varphi \circ \varphi^{-1} = \varphi^{-1} \circ \varphi = \text{id}$ and + $$ + \Psi_{\mathbf{B}}\parens*{\mathbf{B}^n} = \parensc{\mathbf{v} \in \R_+^N \:|\: \norm{\mathbf{v}}_1 = 1}\cong \parensc{\mathbf{v} \in \R_+^N \:|\: \norm{\mathbf{v}} = 1} + $$ +\end{proof} + +\subsection{Transition Matrices} +It follows directly from \cref{eq:exp_state_single_bit} that $\ptrans : \spanspace\parens{\mathbf{B}} \to \spanspace\parens{\mathbf{B}}$ is a linear transformation on the space spanned by state basis $\mathbf{B}$ and \cref{thm:superpositionsClosedUnderProbabilisticTransition} even states that $\ptrans : \mathbf{B}^n \to \mathbf{B}^n$ and $\mathbf{B}^n$ is closed under $\ptrans$. It is well known, that the space of all linear maps $\Hom_{\R}\parens{V,W}$ between two finite-dimensional real vector spaces $V$ and $W$ is isomorphic to $\R^{\parens{\dim(W), \dim(V)}}$. So, there must exist an isomorphism between transition functions $\ptrans$ and $\R^{\parens{N,N}}$. +\begin{theorem}%[see \cite{Knabner}] + \label{thm:probabilistic_matrix_representation} + Let $\mathbf{B} = \parensc{\mathbf{b}_i}_{i=1}^N$ be a $n$-bit state basis and $\mathscr{B} = \parensc{\mathbf{v}_j}_{j=1}^N$ a basis of $\R^N$, then there exists a matrix $A = (a_{ij}) \in \R^{\parens{N,N}}$ such that + \begin{itemize} + \item $\forall \mathbf{b}_i \in \mathbf{B} :\quad \ptrans(\mathbf{b}_i) = \sum_{j=1}^N a_{ji} \mathbf{v}_j$ + \item $\ptrans\parens*{\sum_{i=1}^N x_i \mathbf{b}_i} = \sum_{j=1}^N y_j \mathbf{v}_j \iff A\parens{x_1, x_2, \dots, x_N}^T = \parens{y_1, y_2, \dots, y_N}^T$ + \end{itemize} +\end{theorem} + +\begin{remark} + Usually it is custom to choose the standard basis $\parensc{\mathbf{e}_i}_{i=1}^N$ for $\R^N$, then \cref{thm:probabilistic_matrix_representation} describes how $A$ can be used to describe how $\ptrans$ affects basis states in coordinate space. The $j$-th column vector $A\mathbf{e}_j = \mathbf{a}^j = \parens{a_{1j}, a_{2j}, \dots, a_{Nj}}^T$ represents the probability distribution of $\ptrans(\mathbf{b_j})$. It follows that $a_{ij} = p_{ji}$, with $p_{ji}$ being the probability of transitioning from $\mathbf{b}_j$ to $\mathbf{b}_i$. Consequently, $A = P^T$ with $P = (p_{ij})$. +\end{remark} + +\subsection{Measurements} +The final component that sill needs to be expressed in the framework of linear algebra are measurements. Let's go back and think about what measuring actually means in our case. The computational model described in \cref{sec:probabilistic_model} provides a macroscopic view of randomized computations. The result of such a randomized computation will be a random state. Usually it is only of interest if a computation outputs a desired state given a specific input, which entails the correctness of said computation. For randomized computations, such an analysis requires the final random state distribution. Superposition states are exactly that. Asking "How likely is it to end up in state $\mathbf{k}$?" corresponds to measuring the quotient of $\mathbf{k}$ in the final superposition $\mathbf{b}$. In the framework of linear algebra this means calculating the scalar product $\parens{\mathbf{k} \:.\: \mathbf{b}}$. + +\begin{definition} + Let $\mathbf{b} \coloneqq \sum_{i=1}^N p_i \mathbf{b}_i \in \mathbf{B}^n$ with basis states $\parensc*{\mathbf{b}_i}_{i=1}^N$, then there exist $N$ operators $\hat{M}_k : \mathbf{B}^n \to [0,1]$ + \begin{itemize} + \item in state space: $\hat{M}_k\parens{\mathbf{b}} = \parens*{\mathbf{b}_k \:.\: \mathbf{b}}= p_k$ + \item in coordinate space: $M_k = \mathbf{b}_k^t \in \R^{(1, N)}, \quad M_k \mathbf{b} = \mathbf{b}_k^t \mathbf{b}$ With $\mathbf{b}^t$ being the transposed vector of $\mathbf{b} \in \R^N$ + \end{itemize} +\end{definition} + + +\section{Making it Quantum} diff --git a/main.pdf b/main.pdf index e59962d95492860ba1955072180ecb6761050552..84d9e67248c01068b7bd9a8df084a0ebf28d0964 100644 GIT binary patch delta 98485 zcmV(wKbpNISE+KzEsTHD z@xZA&m50Lfm`M$5}UD$uKX?@rEe+{p%!W@*4OP;t> zQHQh(->6*_FR-nQ$kKw@MqTS7hx2$n>Kh0)S(7~AP?WPY$+l^EX33u&ZygR`TI*u!@$jQr4rQ8QY9!Dm6V6MD;)z* z{(!8jV&K52{48Ybf7Bj@h%GXC_-;H-sKaDZ4K|KVTyj@-)jBj!)nP+gq27UyUE^W* zA5aE#4IJxW7T6gXQKrU5WON~H4mTjq!CdAnP31zlG)`)^ylGW~N{(c(f*+1a!Q#_& zDvi(hsEth4hq43K$+p3$S-tS&Xs}yXzFzwq9^-2RdE?hrf5&bCdhxq&P>YY;A;Hnq zL2$G~)rFmpVCkNu2fdNVU>1waqR4D=KUQTnx@wV)uZjc^sQ1T?$9_Fky${sBEzvl3 zd)%<+aac+EFWU_mW)8>xv~+0_mi%(+!o0q`k7iOt%>y}TzBp?hh=*nuB#8%<>;A)> z9r_A(As45Tf37)t5DGnEs}qpUj4>2iNN`?3&+r=joHb}I($o&t(9Z3ow8)){bGGH7 zo8L--VGUc|p#7#3wiSQq=>yvmpSCtAK|@a(#`Yx&`%8S}Kq>iCmq*Xb*mdAY&4lKT z^!|&d=MIE@6U+ij2{k1sqdEA;vPcsVDN zzk2f1@R$-$p6W|{11Udf7+7Bfi!>W~9qxmH6Ij0IT}e|j+h(cA&OU!Tw{0O@F+AT7VG}pu zO{6Nlx<@9`Y>>2^Wdvpnd;D&0j}#Etpb9m|f5&7G3WYLx&!1VY0MunJ|8KMPns~r` zGHK3{0knsH&7ohjOwogznHX!X!3@>w0ep06ifV+>&QWbf3|4^ybFW&TdS-s>vJMZx zIs)tCkP1kWK~Y&Z^sr~{lvyypH{3}pGX*8Z8}6jFxwunSEUYN3464nYUKmki#l%D| zf0gGT(OJQ@+~|!gv;d^KSV>`QSpEAsE|e0Py8Zw`VQR3BpJg^{sF2sB*WCl(=Ddv} zKP4HIDaZJ*AW+JI1ZWWc+6~jY-an9g)*}q-2;AEM?k$3QA5_YpzB>92f{cf7a}xro z%Y-cS)D=GNtHIGbz_`AwJ8t%r%V3LOe|B)HL}*Sg_-t_6BWr!pW{UH}C7W^i1-e5* zWTQd^fvt^y;LuZVI41Xq<>1AB4t%c5uy%O1EG=AHfq0E?JxeVJB!dX6E@H!%Wd;%c z0GSu8v}r;@ux7FYB`!!LDWl)W4Q90lGa;lO&o~l#RnJ?YE-+lH1OcjVQLC`#e=)ij zn98~cSydN^W#ph+x4!qIqfx=(`0r0G4}6@DV=2Hvsnk_VUByWgi4erlj`J~+B_yRa zp*HA&yfTs(cPUwg?-@T}j}_NcL((^z$*FJ9bi7fj3(U{M0r~iV?SvULGHQ_Wd0$GZ zolO{EhINr01fV+rWiwd4qTI$re}vPs#p4#JIT}o(J;F46nB5Ii??T#*^zz~1@D%c! zl#~a=bGBeigm2K|%n9=MkUc1AgmvJ)G@#PlUI5prMgeKb{FxukM}8EbZQ(NTV|jF> z!OuZhge=hl03rV*;nA)DN=bVqnyw&NDy*bH7zyQ$_j7DPYU1+zKf#uMe=}RFLSZRI zLh7P&`@AJ>G0(g;!e!TZ2j~hBb&hvC$9o!UPWLbHuBE0AAjm5s1-zVJf4N#Zk>Ggc0fkaxXkF95PLD>61mBzAZ^0Gg3wmL&gW_K>`URS`l{p9TaWwAn$7{b zWY3t&XPC0qPIY(zRkS(>e|IToZim3nUPY?I&4#nSLXdCa`O;d70-hjNa$#zOPv382 zneEheK2-e9g}W?N%5VzjmPiAXP&17ZP$aQSE`qC`R&K(s)qGjd&6NeS=#RNm-k}f2 zEZR?J1#r;fSs}jDjW6ng0C2!JZ%+p<=!}y1j!Hu^`9y)d4Hcn%e~i}@xNoqIE6*Vt zW^`CTe&XFiEvvcbZW+o-Wf+CPNgJquP1b!pCVpGLgGrQ`1_2tDXg62hxQJhOv!V8W#ZZN*wogoG2pd6ziY+M9 zP_qQmU|iVQo@y$Re|NJPgG+@~_G-!i%`Cr~vs)ow$@?b)dQlD8t7>qssv&z#4e5*; zrrQ*h+>F)m{)&l#150J`|72onaL#RyAS-fIu`0;j=IG6*MU0FCHT=eb((SLy~KBazJ2#^{D67>lW`^!v-$}JLjgIH0Zl4@$#Uej^*&$GIi*!` zBiNUj@*$JNskoepWU?jMf1mfTkOUjeZfTU9auLxWhzGoV)7uZP ze*cva3&x03iZ4FgEUY8kv4xSE7zs1iiyxMPu#1&abot@7zE}xumhbn~-VgQi{atlc zU;O*S*RT^^FiISMh3{b}x>#{alv807|1H;ad0l^`Om3U)kNBG{@7moRjLfob_ZRT^ zH7wiRgl82V-90X{uqZrtU9)d?+wijK!dCkP1NOYEE}L}&JKD74b<^$J=JGy$$9fpe zz6*oPs%zp99%u zJVC*^4k5&`KRv$p;O-MrCilga>Fb;O_4?QFO~h(_9o}5Vdyn=N%QYY%tcHshE;C@Q z!7~XVmLI92fw)SIiK~GjSn3jCOzJS$plZ2;Bf~VF%Qp16upbf+-R90$|OvDq?8s;u8Fe! z8dj2){>%vyV4jh<6(6r$F-eKm7Q~Aa#o`tJ6s0OKi7;lVN?^1lR31VE&if>Dh7$;Kqw+>fB7zN&031^98GM9{P5ts13hr7B2T?2xumu>wcAggY_ zfS*o9odomoE`I2BrXPA01kbx1&p358!gE}_4bS~;)8)XzuQWSS2Kck;UKbGu7c~NI zEC{E6E<;}?2C$4vU{FQX3^pwAB*>;Dj7OIAKo^_{3P3<~O@#4f_*{yGBTnP$8?-=* z0U-?GaHO6&OUJf^!Z)k&(#s;zX`;=Sg-a!Xoahsx&CZZ*J(2C~ZYu!7Kt-%Lan^=) z|0)~_P$YrxI3w1`u&gP-8BG!WWi)*;H|Mwnl@*xo?cvm)1rVPT)5|4+vegeS!P9eSfypoWuCtyIle2<%K$lT z2JUyIqdSlL~qI#@5(gnK2<$` zMXR;~QWGXYlobb^DN3eS8n)C$duPDL_sYb(!;+$w5B^tS$TfZWyl*=)A#Dpf;S! z&1WuOKmhQGR-r z-1;Xk1pMJ>xrLC+{jPLe4e=8br_Sq6ofnK8dU(UC*CiBEf{JWxzio+N8aC?*c3IkJ zu$8>DL9XQHeFS-qkI*keCmiMS80&(#t1~zk7@V6i;~sM!B;is_P%+gUZlpbbK@WJn z5!J`BaEJ>s;OGC*&~sd-Gs2<5p#nWe4E3S3n}f@%jPHsrq4av|(7NW9QGjU)cF~<@ z7sb3?l)YUnl8^DTeK~ucFPAYxUEIs4(Pl??_)ThJ1EMuaD+M@ z_BUtAw0U`%#`85@P~=zDdX1rf63+Q(4F?Bi87D)CdbQuR;meRlInb6GETogOCxW4- zy$C!u``ZAat-F}#y4uGR?V`C!Cp#JlGvGGH`D`Q{^mHDTPkkJ%yc>|E7rv=C8;r>{ zxKQacmU-S5K9ZStBj6f+0PnzbUMRM#uJCVs8zONF!7onkF8zXWvcWEY{qigj#=Si0 z;BC|GHoNxjHm&x^g7^C#{(XBh1?dfaJa1;_!&l0JSB1emj=H;B2(A@h#y8D2Jo}~S z`n8>3ZI(aZSJ(b3)i!>gIAr3}Sm4NKc{MrG(Mxb+FQH6P1^N~>H%G!g-G=9`LbTz` z2dhz{1U-@f7DOw1I_d|1ztf2v=EQ-~5;X=RJf)K#$}XkW6G!HpXszU(^+(7MDEONKO^R@z8Q|K(0GE2b>lgl1!dLK`=nSR+qdgjaDk};(B<(BH04?eZ<-^h+nL7=b1Zu#N4T=xtqU+1hOd1kTsF+B`QBM^q^fK;Iw;hmwwo6OnH^DgK$Q#GH7!Of^ z=lZMtw#@KM=y4_Dq;L07_U#5u7IIc<`$8qm#zJMO62l!hpj?Jjzt$NmO+rovN^^9c&kQ?P*;eN> z=F?Hh!6d0EygubnU||i+D?JPA478>T?^Ni4Um&)BWPAiW=W`~RXJ=s{>J@U1(?Nwx zpHV)>>HS{Dg3h$_oGvFwE1sO2JW1lRm|0^ob6AvIAUWD7Kw4qeZ-(4(Tu_dh2;t_$ zCU~jmDj`(;QbGuX?0(;UQQ~c3L59>sJx+aDrAK)brc3(-Q%2`SLwh!~pIM+b#ONp* z6CI;}jw5ScTJ4jiHAj&NWwmUp<9M>O)(D1d(2ddIZDLlS+Fl2H$|OjOMDDX7|EdRC z^8D<1N%!ZaE}x%+RUXnf7j~d>Cb?mVln4Ls=6Uf3MrP~0@MJK>CiZ!n{RQm=jLNw>A!2BMGx}9|+%>tyIH~3ROV4o|)QIf9<0`9MwOQFhJ$aqC$nA z``cX1CfTmQ6;~(Q&ZzB?gieIt6V9@0>rMEs{yBNV(E7x=WxVPGW4)1!|g2_#F7cX`T>Ma@UaSTc$E+AMInbn>K zMI3beXw_UsvsX9Yg9g{B4*k!6V$dwS3!Cc;Y~BuqvkS}_0(u_3MAcC%2tYoAgN!qg zzB$}4!vwGM6-(^nsaMy{rUv7&+g6Amv?X;IY(JmKayp1Lu4{= zv6^zR?j4CDPM9K;W=UE++qgW2XD_#`K-A8uI^DuH%7h{%0Y@W(W}O0ma9+wL=gl^B z;G^n-6&mjX#(c;iz9|;Z#gG;|ei{&2NzH@`lStFDEQdIpXzHL-tFn}^&-1e7``s6j z&735X*#qO##^UY9|6c&=h%VN5>tC8Q^d$`;2eNgWSn>^=J@9K?$EEwRlOymy0zyMr zks&#FaGB&BGZ}X9Mthcj%z1`0aOC(Yo*B0}9idJ}<#&KhyL?k}?}3Vxi$j)~)QgCL z!O4QC02StYS$v6m_y?6>mL=#PUMzBJ;M*bI`No%(_eC=Ywwa50=Rm-P?6gIB8n39Q zMBbML{QAgZTzo3_x(+SAW)y@RwwNe2PTagpg-Z~iRF6E}{mDvyn8hj?1O^-?WV%c! z+DpdEo%&o7I^@u{MS2}}=;L|6)MRi<0x9NKVaJ zM$b9Kb4Ia2PYyg zFrSY8KBMXVrL{jVI1DU5xOQqx@9zHUHqkUiQNR&dk%=l00G4+{_iSu?-Tq(tL?08kj<@RMO%CIm7#GBlGB3MhZQ8rhEH#_@f>Lh(x|VAbxs zn_eseJITThVk6m1kO$iVI1*=uI~reVoPU#qLkQb3`7OU&NTHjs0`1*~_ z7lN~#=VEbn1Gkb{X%o>+sfECMCzTgRp3mc)dTI4LZ z(jt&y(u#kD5KQK#1C#+Byn>~bV#eF}=5J{iyKpRbJW<4qa0n($Lhw`gnlDz4DV{#9 z(x+GvC_diPv)lu^k$7Jd_~5+}pjGC0enx-P_N=Ji5u#QgYJGvI-B{G02^tJj z+E3*3juN#70jaU5KairfQjoa()aIGi6J)<|!TD#xWEPP$Suo@uAEl*jsKA+!ci_2f9OS>A_wvSJL^Tst^Y3(s#P}ObG6& zWj;$66iWC^%%Z{nOc#`M$()&7T&4?up)M4m3nRwZR>}gO4%8trBBiAAc4PBT$*#8*xl_Tpw$yV3wfsZwYLPBj(N}=1bKgZ z)=F0c)Jsr?QlwKsN;s$!K}*oZ~%|ZnsO7Lg8jjDAf^XITHFy@R1Wd! zX)QJni$e6o6ab~lb=xG8f(-|r!MK0hGA&niTw5JGUpDVhzCGo;aX6u|}vb{)j31zeiv*?PAeJq5PY~*v^OF$$n%YdD8}$ZLkTr_}3?m0UvD+-YX|9f^H^+a3^z)6U z>CIV7rngzdAFS*hovUV*S;|!fo&T)RWd56PYR+!@+yq(B#R}&!$$Q_0o|WK^Rs+;h zxe3g6&|g%vU}*+1c&yfa`M56|h-ct;=%{G@AqU~j<9>Htbny+FF*%EG*VPs>9ej#u zFNcs)H7$gcLtE|8t8o&CYh3FqY1WlRE;a=HEs`-8X~9xo;F1Oq{S;V> zu{8}dE91LdJlz$@w`RQQOEd_`3>8F3VtWNS*{XBf`%AaSZc^K6qZ@y+R8`-0f-mDu zFwta&E}CIybYQb!W}Mrp&9?iZZYs3Uh)scB_fVS=rUk)WNHMdm)6MpgXv)PzhmeA) z;0+bl5d4m8XLG8#pWE^*T7eyFt+PMw>ZW{uKyQcI1!`5VL9>KDoeSTdtUI9G5xw8h zMkzwO&yNoTJOJe9!xn!B7oS9}V|FMt^E#jHNZ3|B(EW_2?J~Qj{TMyU&PD*DYbsO> z^f8ADtT@hpHh)pi^2>ayH4>Gduy4K<_1%1dOQ9 z`}-zB-0tG_x>zHV_wfn(s(91hRdraCSrKdU-Jy-oAA=x4?}=r|u5Ok5+$Bmp53iYA2IMa1E4jfI=7|QP7J9e6axDl-me0=@&L}Er=AZ4b-GD z&BBK=u0b?JS$wEAp}K~ZB3>Sf^&ac%pq)@@2aQ!rd_6T(^1B6^u;-v)nl_lU2?yW0ry)%U5b4_LO0=U|oRqWI5 z*g=1VT z9i7zmwapaIN?Hx}gp*ns4vYf$pUR-uDg}RfNJfqvw>lk)sI&>>d6HS^u-$1D!)+Ln zFy;J+=>_zp9F#R$Cy%-$)8U}YfAK-rmz*iagD!PZW$MnHDNd%kXZns)6JjWG!Ffhd zlJr8sgzt;$@5r_wmvM-kWL(p;M$gkQ!;jj674Xx~8olhIIYF*Rd%Apbe!BlVH#vV7 zmrTwL{Bmh$7UP-hPBee(n2U>??}x|{^Eb|Gt?9r*@;4@+#BL6@<0nZ-`=UjuW1f8`R~O_ zaLp{vb;r?n`18e6%JeuBV~XiYEzCtYgO7m|l3XrgKyv4l>7z2;8D*;T$}~*Ku`-`C zAUvM)!+t=rSg#1cKvzf6=sXPWyk{q97#T ze{3M@qSHUqpggvb(<2{P9Gez3IOfBw{!7d!XWZMd+>afoXd};RdF1Bpkm!ZXr;7Ja z34mNaO_sBxOu^(3AKnt-e}0sS_A1CDPa}H+dG!;432GdvCMHCUdYQu${$W2n?Z8tH zN*5BUUoA)&anFHB`_XLM*XATl&DmoUBq76mdjGdVez z&{+Z~lTK<0e_b0A++Bl9aCeu+X`pd;3l0H-ySuvw4esucAi*IxA368Ed(OS%{rv_5 zx@T3*s<~^`T6=d7D9M#n8AZ(OO@Na2AZJEaCKf(`oV<#?oiT`&g;CVr)(pVL#KOXX zNJ%LM1{ynC*@MK5oq>D+Zf8q?qN(#65e#5sVc|uje*{PYK|t`E(+ptZ0gwke8>@LZ z09gSv#(x1Ndnac`6Jw`0HxOiD1p?B(QN-*WJit~Kmd<~2uro6L$@GUU$^?)xHnp*L zbF#4l7=z3JGEDMJ00n!uH=`AR#vTMP0a_Z{ngi_30ct=kfV!%LiYh=#MNwTzm6qu( zv8s!Me}g^vf3%3Hs;Nsc0K`QU)Fc2v4F-Uex~kfrziL3xn|=!hfP&ha|4*H_z&~_( z2{jQlZ6yg-=0Dc}UZ9Blv6r)Fv81aPwl+W_8P!9ZK!e_xGp0hztE)7cXEuLOUV1R!T+3IsU; z|Bxi@|K+rMYvmj1&F=hfVQ-Ca{*%-8U*P~JAn-rRSQ^e=e+4Kl{y(vACd9vO7C>hJ3jpW{0J@u6GXE*{ z*QES0v;Hx^wZO;A!QKI2ZfxrW^szDrzP%uNIT^bG0nT6-ppVx-9sh|CS-AmbR;JEx zL;ki=5dX?94KlX}@czsErsRKJ|Firwe{E9Qw;gI`53=$G(F1EG`#&$rO|7_@gM;Y5$*?RnE+<%2=0{=**`9H{3PLfvcKrf+uf{h_P3w^eW(8)1t|YMnEt^Q6}5NwV&vfA0x+`iaspVn-Wtxz z%FgcdA6(Oao$`O3EN@%jfAOCq761gg15FW^7wk>>gRN7VLQ8!mfAXiwU@3W-PAYH( zwPfO9meZy>i15X8b|`>C1pzJo=~M;wa-aD0eUkz}MOu`>IJPevtzRl9ug#Q&ca44J zeTh&dM80QhFsTQo%P;wtby3hB%4Fwh7jw*{x5c-S0@S}BiSc%H-$%1eykcA?Q|Oho zt>wbH70$6XV}ormf8CeR2|J0FraB>=U+=MFqm27Rmg#1V@6hRtGfqO-{Pb%L03wXawLGiiJ~x3I1fZj36Hadl%&hu(dpZ+ z*5_OL!imk~X}EY7SRBuh1bu^xG}I(oSB>%VqM;Tz=IJsae+$I>F{N$@txz$>yLyfE zoShG@iA@1OE(9xJ(cxanMuIu!PwzDmvI`8v@Q}+uzoA67ivhiCbcI0U(UGXbcjghE zJ;vB(xRHfo1LmTl-33G+UBf?;p&xpeD_?hUjE~5nR&ZPI_=AzzSHQ+XQH+6nRhqCj zpH@HK&HE=8f9cLbDp7^p@NIH)BC-im3EcD0(rtt)h$0a5RkM^(+jQ(r)?3Owiw)4` z^#izY#|V~s#cz|sN6No7d`Zd6W^#`9j@95^9$7rs>_GIKjBj&CfRXp6$?NZ_&wS<~ zZHT17$ghjwl1*ERggvpQ_qY>jmq^WXEtw^HWg}j{f5o6b@9W(M4o4JZt-3qqMd=}Bav_C zJ-5;#e+M~mV*KvYKB^8dFnZ$@_pNpTfXO}N=A!4=Ws1aEo@~*)Y(?Xex#GZF5om4B zsfAVgDlHwg@o-2Qho_X?=Sm`F2pGLCa5Gb2(T*K+AC<=5hSGb1o{phH*=!4!5K}6L z#39en%13r1q52ZnA%|fkNgdV8%lQDz=k2uCe}Z>e$Z;Wh${(^BD1@6%hzwYe{dj`m z_68-s#O>XVwl%Vzu&R)l>SE*YTqMkremI;7zvfGcKoHCH#IYW}@`k3+XirUcPub_1 z^UXJZ>|lt8Z59(2e&=RV+@Yq92TMbizk0;z>~(!Ywyg?nLWoK8nZXEMTP~D?uRk*S zfA>m6)>@p4#&=X!_4n|o)^x2=t-oLDBvMr2ROmKmcXF9`i6e|IGE zmDq_g*=o0ninj}K!cM9B$W0|cy5rf`7xDd&Hg&_p;X&AKiYB|^4ENrxY3Y*DY_M1k zm0aJ4&A89IhwXb6h|30T`+_vT>MWuJIU2B9K%qWR?>axd_*>vciDN$bkGGlJ)u!~O zmgfr|N<1;}n%F%Jo|J9e|&m81buVz zzDu7A0Pg7zIyO=ol8+O6cm{Y0y<7a=_fEa5#L44w2II2A?2{&&G6X7(yZqd4)Q`ix z8euMXbAzG^4P2Py zZK!V#VW)u}8Mmlc67{b6e=|rJhw#gT1p3i}=^KycAEEV{c`Qq;>=vECEMgF?0w>+2 zMC%w{d|4F)oOj8e+>R)g_va|>Svi`o@&m?j+HyqB{0BOFnR;*BZ5jx5$dR#E^@xTN z{X%%4Bcl{NET?AmLQJ==hiQ1dEbkw^90n+xx?=(!wHviRb%WylegW6bzfxtSEhQW^M0-ZLG0>M6TF_7U1>0ke@gah4u+T(773pY&Mf>v%ctb7S@6GoNz>GXrwpR(3N8DCf# z%CWzADuZ+_C^plVe-nwMFoT))NhmZC^aERc2!;d_wr_W=3BT}=I$vL3p?Y5Q+} zo&_wikDV0Hg(%lz{79dFS(|p94g;#0Zi{R_#9Yv_Oy}u}&ll`B+mhl9tUIFG?Y7E? zu$zq4sz&LBwjXg^DktfAa-%5HLYf)uj6qo3y%|#H=}?R zPs`Z7tr{(ff3_h_{Jw)s=syo4`M>@Ul+#$Ew9E{!UnP{ny6{gmVgOdsRh1MNq|vrd z1|1qA1M3zbtyClCzPeJ+2TS;4=^C5CUQ=sz&J2$+4W2>cEPp4l@bEYzQb_JZp4W_q z8`B~iUlJhv;G}F#Bf=KfWlDmR_-&AU5N1=z|kznX{f zqDU`^$68~vG|?JkO1;FB<(4%RIwvrE;*tO4mbFzwCO!99daZPcV(N;Se^uamv>XPe*}Ix$xOHW>$)nN)vrB8>DcX42su6H z@8=dAY{y_FIoEqnD2=nqv4kCy7Y*>^x0})>^p&nuVOwV}RePGSx-|$a!!!9RQofc2 z!arK|v9mSQ8o@Ln+uPlarylgeyhn%9?NVkbXNhmWeYtda?Vv0Qm1>7d6~Moth|YY} ze}ieOew=YI)csX2P+QNj@;&)19QnC48NV7%gc((U>U+srLj!s(m%Ji&cz;@zu?BCR z!Q#=Lc<@$m=Z2Te;|lpyDbyvgq0-X|B#gnueaEhO%Ft@h18k_0O{TR;yKCy=GiTpp zSYxZ{gvpf}qqxVjC`P41qepRWU!71yh*0V(QuZCtq5 zf*8VoXPJh=(f{P_y`M#V-3T1r;K-ya%75SU_%&1YSVpH$2VScdrAKUlZG9E*e}*cc zSNAB;(qg}s64K)5|iwt7F9z}cacQeuco0=OQ|#S zRswU#_yNM72n+6gePI^*PB=1>5SsCF5~f@ODXvSQwEF6MJ_N8kT{Ym)3&Di0(fI}k z9$eXa2Ki(rn+5GO>FO^{jYiR0ctP!%v|C}|MM~!CBB$gq3Qg2iCLH^pf9V=AP=QXI zBCL7w9-Q|O^*-3IX^v%lIB@ML3rn19ZT@Pm1Sl6J0=ml`44NHBercAWBNu`r&_6@y zl+h-yE_K72^?~Dc0*&$lROaQK1VX3q=kMN~sBTYUNF|w)@?%?iWpR>`hAB-j6p~KI z4{J2-joy)4mTWWp(e`0_;%i;ICw~L=7a*QFy_%_~mRAJSohy!h;P0LIw3~iJ> zv~O99v#IRW;6#s$tB2dE&^++dLdM!t=XEhZ5wB0bcsi}g;}dJ+hTGDd@z_3}>a9>9 zgy9l0(f_z6XKvXkZFBO^M&lsW*46QPp_d}95IE>*PlK_3Md8!7e@O2mClsS@qTqpR z`Tb?Cgv9Wfe0I%mqgocFBU8IjyRNhCTTB`9xh=}!1F5G&<3U0Q)!h*x3AmGyH*&Xs zzl5iq74AmvI7tW@cll!C8tnYd3N1g@!l?JhnTz>*I*_t}v+A_(4$%&L%I^ zleRCvAYMX^N(og2f6>9ccM!rp#P^!O*cyfDqnWXo7%^-3hnKHJa3<5!ha;OL#i7=2 zOq@|0rH=(?I1!tINHlRXF#CERLATk1DC}ULDz!N(tfaatEvm9IDemW{-WfKeh~U8%6Sq{m)M@Q6dz10BF6w>*k*iYlWV`O+Jky|9irJ{O1sJVz)<*g`gQ})Qa*@ap6IB|{srVtwZDcHFZvyH?Wg#K7wg>L3 zD@xhZI9rRp{Z`ej@F>AUNpw(F`b=;*B7qN8wgsDlZk%*u8< z9d%^Dizi6_uCm^#u(7jt-cLl42k|=F2@_jM8d3`(DqYE)?}A}BQBakl&o(My99kRV ztBtjzW-CD|M_N2{?tawg|_O(sizq*ngRTc7gR`<9ogB9n>~;XuPN~} zJu#wg=-r3X7R(C$z`RF_4hfDhNsIYVf4o0_fF3e(Lm_ZH4AQk>vMN@?@7{6zxc{!n zJG(h-mK6ArLS&7OV>IJ&wR94Pz?4t?XT*2M?W{8PxugBdazoOdlsim|_f~-%Jbp3f z0=UJq$=(j*+o_^ExiQH^9CmBqT+|zXbgK_q)6nwZr*Ouk2BxcTnb!dSivzb7e@CC1 zQ!nP-MpYJLV|xUbTC3o7S(t_Q2;J>10Bu868g>~;aG@y6GF$Z;(-74HdN@nDH2wB_ z(Ip59LxP_CvSWI(+Km7un&zt4)`c45-N=lz1Xp?tg5f8FUX`yhD0qxsLa8goG4#m& z=qy}KNxy0tHFpYc<6GK>Zh!eTe+Sf^ODVy8igUByLr~?v=PQvXS6!cZwAvCiuu<_= zpqz=?kP!S`u$5-~wUc74POfzFq&$`9KJERN%SQItMqe~UiI!>aX4#d3?%S0{9^`Ig z@RfIC*DL#vuW89sbyIQnr3@6vyS^Vam}PUR-RbkZ#h+90j7QNQAAdrhW~)E^E=KfnQ9c*DE;NYr_uI>iFtN4Sas}Sw5L*-df!#b5~Rx z#_R^9^VM1S6m?iA< z?tOHzM~5PAj%C`D)WUmLLcvwNjj!J{zmTozt|6n(jnl((L9#3ZA-PbG8We);LkHuR1v~(rV=a`e*`^1303L44gcUttLH~d z_E)Q|lxFHXtW5$H`s!{DdNFOIt>}f&1BGP`*x6^et_Wzy3z4v2yT13+ICxmh{_7`LbHHp-= z;b(tVIjKaYe_!^(NsV^Hx&tV0pJud;KPf|Z3oy}XxIna`gcP4llKyE zX1+ADQ;mW{_DDfQr`;n?le_QTC^LnTWHporlFz+|e`KaT6K4US>$!luFD+pTkfzqt zKbCa9jz>GTL5@1liWVz{!_ylnfR6B?kG_>>`&cMAL^RAh;;;ZiF5tis#ZadnsePrM z1aX{4&7IPxkH?@9iWD^O`16E1geuMv;)1lF9_z+5vE|P#}S?~x~ zJeaU6f9?5KCu#ZV!sr91-aSUNJ`lHoQ}RweZLP0mkbN%F9^A4cu{``;-U#-Zr#}^t ziT@Hix+V1S>L8gzeX@=gJZ>V(m&D>bXFxPR1I8~K!8zA=JI#e>n!xS%Pdv+9}ce zSItkMz%BSZwa9Gn8U57N<8j)UF6HEa>wvJ?`;6=hk_)k&sqSg~K|H^DK+dUV)LQG6 z_h8dOeUjO1P_&q)YxpbbSww`~UT+sEz7Ex=m<6n;D~<&|m+>NOYIvVRihlcPzmASU zf6a>X9w_ioS5&ZU@$TFgOZwPbeIe~wksC6SR>Y;GLe}_1wZk~_;&rj$;N#?gl)y!# z=4!S1a>>di0;_f}kjo45D2c)SZF;Aj{zpZ|?!h$FDZ+0sig+#PKlf}7Ez{$v{KH7X zKeiK(+;mZ*VX{!4R#=hj`^!j=sTC_Kf9R80l|Fp3;IXF&c3?2H6tn!9MLJr?pp|P8 zQ_6Mgui(CN^mOqpSW4 z46~86ZeGf(DBq=Q7Rd*(GhW}Vax4kQ5kK}7pxJ?-_@~a$vRn6#nns&fF~foQe;<}U z@yEKcsDOfJ?O+o*@|&dl^=psgSy*Wa6Eub#BKv04?>^+=O%sDHo$em=BqjIY$KTZv z1d#_~zNWDS1h}j>`iV&J?>Kjs$nh;Z+6KyoehHyR5UHRC*Z5Vyp0_U%|BIqTgPSX)gfn{n!>dkWlfR_y zE2FNJ^d$15;a8dRG8rIRd20(oeT<_YT5~?G&E*-_`6Y(uh<&#vCA}7(X@9GvBDW$)k!-+RSe`18>8WXbDZVs;qTnv+K)Q@L zlPc%)up~t0US71QRWWW!&E{R1-1sqd)xS=RM5q2G58kXGt~|R@5m#jV%px=f-$p;JAdnZ`V1Dn zQ+Kkb3y}-#e1>T$FZ{Z^^{Y0X-`Pe%a+H3vsRNRgjCc&Jq3PQ&#yQSjX`u=onfCDf zX32Z*1{w)Eaz5)IDmV`(M!A_m_>I(;gRtaJl;#}oB&+lgZL>e3f4H)}AtaJfSL89N z@flgJDMD7k^`l&UC*Y1@Qh!V8AwA%GdA;38O2>8~NSOmCjhWA|;eXI%#`s%#6)h97 zICZ4sfF0OJbH6m}NC+iB0^ zL!LB#$;sBnh$@>&3xDk$GoN>GDvN;i&%^eaZ|H|6aq4nm(%2CUw-8VpgtGV>j+bcT z1bkoo8uYDVCFs4n!7xCnZV7_vSFDGpM#F0ttM_>Q`z(V~a|UwEtCorbMH5K7v^N{U zqOVxTohWdN2MqfhnxL`esv*Q&>YvKRPxsU~0s~wKzZ~)O)PGJLYu$CMOmW zDd|X&vHJmyw|`t9)M&-skb;!)s2pHqqKaOvXc%x*iuCP)s$t9c_r4rXX+kGhb|2y{?KOC4V4jk6igUHoklkZYStQ$sJk*KAwZ;QHC?!g zSqHQ#HGj4&j$kn>EBmH&4l51)!|r>&9_!6EXR@>`wDo2D%>Dk$96h%VrZ6l*?VoT0 zhSp73Wb)U&4DOrxG%Mn3cU)O)qBs%vGuYb$X+cpN`V)MxR1(D09=uV#pF7BgW zkTw-H4yfh{cn9`6z%oF2<6=C$D-_q=bQ*)U$z6+fPYw^kNci&{Po;HK zA^+;Tz~QPJyh=wY-W#nDkIblkknPoFk#m+TCe%LHsP}{E;OEwFv@lQ`vU6d*n?t7& zV}FVts%$VfL)XRkeC+&88LDcaN6y>^>Fbmj znbbvzu5@GLuZ4loo1Ul0v5%ZOiUM9OuaH>3e|<^j;JRp}YAl%KoAE6i?d?*~nQ3WO zY2&{!p?a5ag0I=pqtqheCfkQtZL`=Bvyqe0Hv9_%ZT~$j=|`k^yH(*J{m&mBj(;f3 zDlL-EkpSDPvmog#B$*|YH_i#re0pmtdw_C~bK4#C+ z(#ts^tBo${8L~lZuDTH|7CA2(HiVX91Ve&Mxz<)g%w$2q>;R@rK{vb`RKjh;umA^qgD(g;;z4dGI z^NXVnaioDK-QG?#B?0^y5DkKdS|hymK_^0vg_|c;4hJDy@-7)F-GY!HQPkA^0}&g` zKF<*i-Orr8uap5Ak1TBx-%%zr&mqG?n)H)Vj@@ZKk++~KzW99^sEPsq~GgIJB zmD2VO_6Y&hC-4<|7m&^zaY=$IqZo|WzbB93-6)rh3Kc0iPnXOtnxz`+zPa)nsaS++ zU5xt22Xlw{6)B!%a>koI*UZA)pB$88h%T!qo@LLIewFS;2umx#&Q3Ja&0lc%ak8*+ zusbb^^xg@P?laB_*TgUH^qE7p!H zo@#uB#4(-7>b8HhF?yLWl5up5+6@0hU$w#rZx@xp&SpF^2sWWaMSm)49;9}{hB8K# z3}e`@LO}Oqg`S`RILeBxXBE-c-9VsSvIo|9ZK26$PYtvlUgavLKNcYusoTIfZM-6w zNCszZI-I4}j_A-D!)@S963IKf1|mG%P;+6;az$p2v=b_^c2)lcLZDdZ7My@`YY=Ifq(BPq@c+}UL;6n-GU=m3%Y1%SjBf- z`==%dT!IgDI6ofE85>=EkzB2uca37*)#KIUzxDLEtF54A=6@+?x)J%P($CyB%#5Hm zy{`Fk+KbZ}FO7}G03jMP>v=CeOZ98jKM+M7tpgIR0UhYn&p#nvpfzxFh6~k0!WQ(M zPc)3ZY_ExSr3Lk(Y|u zevkI{Z>tG79HcYr_`($Wfn(vjzW;3&1bVA4Avfu0Qr}NKNJOK_2y5iuSx1x-OS+y9 zc}zjc6HkcABaY(wP9*m&e4ZFwr4wON9-=2X#`o`_zJE00#PVPFk-X|(NTIfJUazEK zFRP+{whZgUp4UPS9|$9j;~6vcoBrCP(%sX5);;R#$4`3XTC4I7ygSy9?i4pB$VlH+ zO94&$)7sJ!g)FnmEa&*7*)YhJ&yp4xr%P;3H}5Usn)XTGjxAexJBb7xoYqkbe-UC_G1`N*)gw%=vF^TLpxK%Jh9n!msj6bpg~A2Ft$lA@W*PLp75 z@q{+QRGe0lGurIip;{5+d8E#b5+u_eH!`JAf`1I4N~YU1!U((I)ab+7qvZ%joe+87 z7NDbs;qrfcj|tKyl4fX0P@waS6s=*P9DQM`Kcr>m3qdt)QxI;8(L=OT{srooCQ`B- z{T_&KKqKJ1k}jDO9PfHm&8~TFA8E}Y94!S?z4y44KFapdp!qIW-$=`EXhuNkSeRN{ zb$^GVx7=^3x^9qmoE{c)+oKBswt9CB;BD$>ntK~%r^E2xiYIEiO`T5$@ZY!N&RH7~ zuG>p(r8Nt}D~4ugDXW53+`#38v)RHAl?isplEGmad-Ht(_EI~gnyefz3~cta2=8E~ ztPA;Fw8v&_`7j-9Vh{2rj~>XYYxK2=5KFc0DF!{cIH-CA zRC8X@>E~F+TePm^Wwduq^>IJ`SkzTTVvhPC)%M;nUyDBuQuZl~O@u-w5`U$RJ>Tzm zsC0gXyIpQOnfj))hD?HeIO6V>y%f!3UQYU1>NFw27LY)hKNjM)2 zzRr;ng~<0zjnW|Og6ueo4kZQUVSgeP?$MRnJ*~RXqKvH}YM77Mu)ubV@BN3PEq*k?F4N!3994od3VF1$TjPj z0q%Q@40JA6D+>8I=q~oPs6#+U^uC7SSlK=Qs_%Zre4O#ZAfw-h=r@00gkg2Rj{lvy znE{p@SKZUtRQ)84@qd>zLrCUagBqI(T1`ivs;jSdqLadU=VNq+t23BxCQlCjYu>V0 zG=ovj+(pi+U|ML7d%R@c|cOp_e8K}G432pcpxx2Eh z$(_dfLRf%0jx3R1DAlaqcGqdn2C&MGn4$lDI0_LHY7PzsX@A!R7HoWadOS8aA!gU@5^%4zoUB#>hZsOAWTY;jw1#d?Gg?U#{w#CwFDn5bv{z zqPh4tpecf(M(an7O)E2qiYX~zhX=RT$4pp&t$>lDBGfRBkv`(g%e(QC()&*PS$`&x zdT=YrJea5Vg?|ZNo|IarF8IbazE84B+w38ItbHhI>CCWMR2V1ba`*TksI-(AWF-#-5}z)g>NC2o!6k*X}#j*M_5#>aiOT; zSh4P;sYIg6(LzIBk@=W@NQj2WcUBF&CT6X*+u@Mcl7IR=X78?k^8;jj5t}4nm!ba- zU#tq;Fy0TtX>!#wmmHLy1pgy*oW5jyLb`GP$ibKqDLYPK4(Sq7oSz@@1H1$(CCyAB z%1012K1XN4`-xd+)Ttg@o`b}c4;s~To}|Iy7DuWd$?F-ucGD#j?V5FD+0BNw}hOowB@W7qHRLC+`@~29b}| z;7QJrkbaZh*S~3BTBv!IdAx`@#ODS4#mD);=@*SM#2uh) zPCq%myqtfKWb=r(F^KnLHK%GJTL5#GE*mQta@~I>gjjn%2E!|44DWZBtnG!|S`rkV zJ6Q&34%tL1XUnY}TYv>-z__f|CiB7-mayI1U769IqeM2dT_u-mTWO2AE(lBexm7cv z?tegxWJdP&Dz;%B`qHsJm}O`p6U z=2M&jqul^;_w{NqB&m3vivQNUVWa)^4oC5vPmR8TN2>SpaRuv+T{&2VyX-nF(d-?! zLo>VI)hF=`$e+sJoJ`3VHYWgBd~1$AJC&=V{1(;uZuGK=(6tTX-BZQC3S;%T7VLuCO+fj7#%`RN+ z{r))FPR+OdNKca?P!3`qkzb}?wuaOtk1Bqca7FE>bH8Ln-i5Ct#2>ey(ToM1M8Ys}k;hAlTyh)9%j5SmImHoX*}+H{vX?(a*v& zVQq|g%_ozmLKPkFKy8CL2(iv!ab;w+gKFfp-SCi+0&cXOo{)@o9&3`oIVq%dl zUix3NbuzT4N`_KiN_nAjV0^#kv62Spvs`s)|80Kmm;R4ebwWekzw-A^jVC>e4~zoonS%y!$9*!J5us0Xg?!Z41wdJB7_G)z4c zehSD}%=e@E4ZsO2GKDv8*?%|BVZ+oY*&F30He!SAo58SGmM^7-L+;wmsDd|zg!2^Wz+GkVVqb zD1USgo&F*V{kS_~BH8FpL?x&3J6x%8CKXZJ%;2X4?Y zxP8*9o@(FjF%!*sB!H* zN1F2%YE1Gcqqh^s4Mbft$wKd`TV3eBGR26eb~fx&G!FZ0FT2!4-JMkloC#i)w^9{5 zSX7KYO2Jrpe1Go!QcswBkhq~euWC6GRf`#(Ia>=7puZ*{@sL{Q`(o;4BYjUw?6l(W zMK^tn;uAmGgb`T>667G0+)c$vY(rpw2R>IGn~~XI2pVZk+5a&QwU*5pNCCXa7EQ!K zhHbPLAwBpQpJvu$=_`AD5-<3>t-tC>!5esIFU8!oAAf(NpviT6h3s<7wwt*Y{j_1; zbhHKsGhAGld2Rzm7LtnrnW^L{@cH}V3-49E3f@6|)`-exG6KGGJ{!h8D-@$-x6Q8l zF88DMSwx*24X#jvLz!ICD4MR$&im2g*R8K9SW(n&u;|PBcB%E?8TNM{wI4jRD$-j8 z=?@*ap?~-ny>Bl`HgL&tLm9D#?Z|5_u>WgHNfnvDD6qUB1 z?@oUo%dd|M`fVmD$IT2PAEURxhs@Z9#n5^%S9} z)PJ8B{o!lCa`@Q-yykNs!oJiLs!sK+^BOQEd*2%Wet$)x z)2N~Qa%lg{z+o5BRLrvqt$-r@mj#w{TE0CKxk#_ClUgQ#1LY3~a5hW;Cqr9B?K&D@E8 z*iZh?G?Ympa~gW*qeI-g5-!T(jekgcMPp{l=U}_rdzbs0zHC+EL+`CsuI7>-f`;@=HutIkY)BGEB|m0iD<(X) zO5V|~xF&Ycw~Lhr2>c@i3w!>KkQcV5=hc&S$eVbJ_qt-KsmB!6ta5UrTo zi+nWZ(B8&y_OX|q@$;O7UQ53-FJL;XlzPV$8TJJzR5&n5L5_yff?LujhUWH3=cyZ#f#sCJnI zPqz_+w+p6NlzV}KG8ko(By#Ku!;4&jhnW!~8>F;uhVtImJ^gFU%KAAaSp73ANpRxX zA0TvbFU%gf(@mPRBa_GmJwS_Q;ptEXB!W2U*i!U@y7P5?*_pwPA%CT2cm~?2&&Xe8 zGhv9yg^J^LEQ9P*q6*vKHr6WOt}f%;%Ew0b&9G_MZCWDlb^NXj>X=kB7UCL+OmP}o zNrE7kjzeLxYUgSF^-xPz?OxhYM&yWEWHat>OMNrqE9~S@p8(qDrz-BPPd@QeIyKI| zC6M0~k?<4YPwuP(9)GnBzlzS}MeSR?Cl`fAHSm3jn}GT>_W}jt(?Z+jGya_^budwi zYm%}#+2r^RjP;G()NFh&5%y!l-YMLEyGlE$19BFRRlZ=piyIC|K%?G4z0{-VJ~53p zwmxH_{X{=Lc}i-Bua6zqe=CyL^!H4=W#b%_`hV+I`F9n=m}n&l~U4<%G4 zn9%qqBVfa^EyI3V#}aD6d4)TGcur+b+6q46dO0pbiBiN!F&y#AH{93*{KF9!>+$fN zO>yC1s|C&&_kSWd7@bouScG{QJDBBj~@ZF?j*F*CH zWe5hEoWwxuBo*ykk&LKzk_?HJ9sSR~?Ap`;Uvo%OkFv4GxX5`n77C6Y}~GtHm{ z@E>zU+ReRkM+s2Uf1Goh4`mtRW|kqn5JPAb=xD)yB8~|ufjqR%)x^r~*nt2prfolp z29w2y_+K4~%>-8pJrK7iX7<-K1XaV%g(EN?@dagmDF+S zrtcoM1laVIv1rwHDyvxqRNvj}y{K}KtUt02`G0*nM0MU|QE(y|E6Hk|9gQc6;uHFX zt-?mQ6N73`&%=#5DOvipVcM5Ji4I$x@7JjXfzP|rvh@|}|Kp$B_NPE6{@z_g5#elc z0z(S0i{qIl<2751$P0tg2;r=RdJd~b&B0I5v36zOcnwl3)Wo5NQHB)sc$E;NDiz_=$JDQ;( zJym*2u9^)|Co@ha2U%!GMbKyx%TLFi;ORG@LJ}3GdY-jS9%Ec*xB0TA_159lyl>=c z3}3sIk-^JVy<0?(@26->y-LupI1xjzt^R?dVm#ALpi*^Oo~DW>M_ONUypo36ZhtI! ztu(^(+U{QbtFYMlM9bU|*7=pcyjgl1DWksn9!0BsE!nyaZ@8A#>{<(x8zHg|{G#d& z+_Nak`)M3|zHje|r8`eonkJeUEbJQRZzKyF zzH;HqO$F=OvK9LeI3*qPBVlzEnSW<^2w+bCMgK4Nf`+=}KPwfKfA_7iacw^j588j&#M-$Dbb1`cU~OUrheKL9J-BJVWn9F)gX@`%6kzYLxCGlLy71 z2x@)gv=D^UP*Kx&KBjnQioU*2nSf09t-NQUVq%(KPdHwfJAl+Zreqj1>3>445|kqT z8XO)a3`@W-+o&Xza5k*C_=Og|^m;oHJryqfedlO#Xbd&3&Bv>OFbeXG%QjdRs1B&S zW1G=sEDP|=K>wNHjWf67dqfCP}RktpLj}nXVFG&67AE*)sWOq;g~=(|K0Y05T(@{ zf82QHPPxX`Gai?8WL{UcT1x5XQb86Q&za=$ZNQ-XozD6A! zkC}iXo)F5KDS_jB+qE(-gQi-&)(Ys39Q}~`^-7Je7#_#7Sy&96Ebp#Nd~w#Up3QV` zl%3{N!nb&PIw2qHjox|U4$dOPzvgin=3NgPooU`vl9e_XN`Lg5!T?ishlrkf!*J*M zCaoi#2^qjq;;f=jx7w0)Y|B}Llt@emoWT^3?}-Z|Q@<}L)-gKgD!RL{J6>dRI*WWp zsJ2%egZ~gTn*|w!;kj7On}ZCI$RGW_i*CU1!Fx_kbX}03Rs9@CzQEpG_@d_j1+yVc z-jf7o+50*Ao_}gJQg#d(n7dT|9pUV?6qU7Thy;_+fuv>;)Eb4tUFO5Q*oT$wh}=s5 ziUckDp5reMl+2x%iSRnqBya{SMjXa^Os81%{E6Bbh!dkqqM4JBO}igC-XYdmP;Z$b z@K|r|A(Ur@4&et_o4!IP%LV_%i5}{o10P7y0ol(je}AWX;-6KXd0;OZl6G9w!Ej6- zrR+c1{K9i!yXcC(QsJPb%vbg~8 zPwLs0S`70%dwHjM{xIGM+JLQMdhpC8o*VVH!Hv+RNaBNkOtsC7V}eETA!+tWw8o^N z_Q<*{%YVAzK4|%IN$|MrsVJG#mLZ{M=6(J)cmFY(xa6a^U&f`tJl0%;&$F%j)LmHv z+1z50H={%ZjBT}YGIgRSZnh0qADf!|NCqGEL=I$ha2tH|9@=}ez5@9S8FaLL7Cb`5 z{c43(%ZGJ#foe-to9F@bK=jVFWlUM*0g<* zMivk1j?7D^smwmx`OV_`4VS4WuKyn&r2j(@Sj>D>XtH_}$6?Gk5>7xIsMq9KgO}>N z{eOQ=&cq^$89Emhg3C2Alv=HH2^G9bh|e&IRuzy^x!`tGm#1k=uvE6k6VRHq{@<+y zoAVe3(oqB2ac}=%5Zc!`D#rD%X?jDc=*O@E5uFsw$i7Civ&1`k_-{_3PAe+>zf|q! zEWLo3R!Eycm-Y=bkk}%?Ho(L{JaMCM?tja&K7A*2(u$xSBA5)^>YYk(OmSo36dPkXuz* ztCrR|VxybgV`p0=TF!D-WHsOXiV6=X-9q1$&6?*8*Jt(&uh@wu3nl*^MT*P47NgK z!=z8{(2;PR4Bus`mr$cO(fmfD;eRUH@cT~7of$l~PyI?z6g$`&coOODAm4DWL+K<& z0Zre_oAyDBb8f8 zD)6yKH`lgRG%$rjrL)!h7JoL;bO3%16vuR&lm;?fg@tdPRfsMrwq9H9VKttR757)40pa zN&TPwCJ$E4U~st>Qgta1EJVi(M?5m6+W5fvW4xzWvY;&Y3Pz@XCV%#m%#*H=I|STt z&ao!rf17CBAyak}FeVVKeBj(5|9aOB&$Y%ZLb$NEon>m4zwRojiVp1Xl7md)73=>gmHE0uJ^sND z@;Bp)$l;rTP%0VVy?+rp_`Vo9kaDn&r~NWimYEOZ9#|5L>waI>bHj_ZtJ<&*S0dso z&p0dilE-I>OIXij2v6s{Pg`JAFS^&<)&(m?5#AAbnZmIS=KA0Lw};8M8y^)-yHJ%AY>Kd z=`;3RD!4mhP_#)0he{hLYkkfQOc6Tw!^eA|bLK%kWZvzCT@kT`ah z>)TXV2JJI*(PW2!A9`&5Asvd7Cr7^dMtNKl92IhfC@jiPPJ}6@V(mmbz_ZX>&zvug zrb@%b_s%WQkAI@zJMk&gK0y|sb!h6{2N+QMxPl_<@VGVJpmJnX$JCT}!Mz4ejOo@! z+_?x?V~C3Fr2DRih%sD$9Z(e|q4P}mcGK0DM2I7#)g++Ul~bGrwEwU}E%A}^&M6KP z^X9lE_+dtNNzn^Pa__>jR<94?gZkezrsdDCQ_Atf9)GI7M6~8w#XwWQ=W&R^gf*h) z|GHUU3%tZ3lVQe3nDjkl{;9f)7)RHU~7@Qm%`2>5n z9^*tM6o1qnU{&H-U3n@la06qS6Xx@TRUxJvvzgzeOn*1oeIl=*P9L~Xf|vDRGq1rK z!n&hGRSF$5tlM>ln*QO=)4f*sG}i(IB0NbW@5Kk?iZvNf_RnS+aVuuRK>IhA@(w~_ z*p=MmbV0Nems|V6Mx5mcn#aWH>b~A4_LIqQ1XM zEym3bfT$y*|KUJqEM!G>ZcanWil)gl?N79rFbc)Sfm7$)Myz$@0~j__YM=Q1!{HX; z_&|x~;H7$M)g`q1Mx9UJhwY9p#?P5G(dzw3l%@a&D$H=n8;5F1!QzRS_|sZ~x-c%1$?ve4oVrhgqM zM_*A}4M|HolT$Vv^RQBwt^Tb8)ER&l71qOhY;`wXG2(sVm&zvwHA9zV$y}N!gdfk( zC!XAN-^hegc-oB1|K6>0-qQ6~+&^`f_2UDG zI0+}^@{jgm9j%dDvPaRY*}}<5pN*FVxEQ;CHkewM_srA8_gJp91|2E?(X6VG%~XjJ zMe8th;MCVhihD{w3=n(=bzHpl*{q)W+j=GNMQsBC8a^m8SNdSZudO?A&wp)aa^>fG z+c@DI4uBm{nRZ&`9%=QdY(LX3vH)&ER!fJNY%m0@+_S5&8Z1(OXWJU<4rotX_l5pY z=yFa{9qRju(_P%7DR+Pse2uQWDA(RxwR$k}Iw)C?Bniz+u=x9n@8mluKxXnzORw;y!TpndJFcaT3m!`vC+oTc9{jNFUGrwf>gJ~mwyRk4uA2wISIxL-xucA z+fP_LIQh%yU+~Y{$W51qNm&4bE-h&X)7ygm<&|eJVFG@7Ts! z{Z+B3$&0Son#WIY*x?u^I!l#v*31vh5L<1|E0OPWoDoNUMjs zZl05T)@C3fXWvb+j(=E@e#V3(QRDYS8%eF$VRtW5D)xSn>?=zf=*I*ZO>(E2ug?YP zV@Wt>i8yQex?KDW<~E#Tj&4Pv`SdkQTk`ttO91n4EamiMk?w|5hQPDfOqjbHVeY&=iA&tC6!M{~kq(+shkb@D|Ebsec1WnPZG)^ji;C*I)t_ z==>)zjJ6_f@ww&^IvgQ77(pDbtId3+v6^adkq>-!ZKo}WqT-_%3 zMd8tjeKSwhm_Ws%SI~r)1=XTgW9TCSS$qEv64!{o`QyC|=xR$sKD%)u1}A&h%=}cG zfc5m)Fx$?x-+##0fb0;L0a%mbQHID_WQm~y0S$k#sJCqC%AqBXzDBI1$6+VXM<~>v znnf|VdIMk*Ptj0JVA|ATTspi?0;cNYQXogJ(Bbua?Fbm4x>LN?^ft#i3vq%iEk;TZ zp|MOe`u?}<+hVSs)TQSGm{Ptvi3b&UiGWhZX69v+On`g=o#;4+&y|+_-YK zzJ9%l+jM73|LxI0H!=y0!L{om)%ZPXDO$PU8}wC?-@~{np*znZm%DaW2p-iSp7MU= zF|HX~1Aikn`o9tI0$}Kj$y1Hfq^!jo1$!YL^Xq3R_xT#ttZxqzl;OavXYL3p1Wdqx z&20JIf6hTV3oQ3{QkI2>BRDU{QoJH0i~|P~<{*m#LxN8yNlLA=0#votv9`on&2+a^ zs1U4yZ2g8`v=nF!a$tR6XMWUr z6MqFp8J?$P9x4Ub{EyRIIxpH6jl~-cpMDTG*I!E{X)ni0=l>r_Yk1a<6MY_QbORB* zAH`wb9sI{|;U~o=@l2*qWeEj5J_-C9pstIf(uhv|0;DIuxCdT*=v$!1HCgtDm-4_7 zzE@+aYW#zD7FSIt{Q7lEIftmqd;pjxUVq(<&#HeV>b`a$ev@4EBRnP) zy8@X!81*8Jo&SMW+e0~?YH1j#ho(y|?wAG+N5J*a6)^UDe$%m=ymW2kKxNb^dpU|0 z-lFZ;GHx234Y7J1k{&Y#t1BuFt}gVBr)kE*jx&^~c1)faUWN&&DMGc+FS@&@wSP3g zBaHT2J=2(CnBGtp-e$Aivd!!58Hd(NL`q0D9uybro8@ISj$cy)Y(O-%qQ?HEeNd_F z^irGo2f&m;d?ghSTflr^{$!Y`u)bfB3)cH4GMtN)#e+PU=jZ~=k+nwkRHV6hTTTUj zR81ja8a4keAGII9$Fh8erKO4wMt=xBQ-nq0LOgT(_%4}Yr;=?N1^u!^VDp8W8f+)1 zeCc7}-K(Y+Nva-8p(A+5t=M>w9`c-w9yVgLHu6czZ-H)614W*H>liv#EqaWX>FVLn zGY*97`i);v(fPi1#LDe~TKC@eWC@J%p=U%-Fd6iWJi(bo14gau@9fo`8h=AvdAgF$ zz4Nral_e*YHi1Ay^ishema&`(0m0}@tAQle!^QGN&`2@W42-ey5l zw2h18i!H#PzvE`87bF%SLzRdApZvo4WSHP#Y-dcRmJhYHD#s!A}a3-THX|*f4>gEz3nS5(hkfp(6E;r$8?Dr?t+D zL?Rs-(`d)fD13&Pn(hRK_t-_SJg5x-&&AJx2=Bfj!;hIKQhG|PI?vJ+9KQ0mjXYxT zow0bBHrf_JewzsPy~_nJmkH(12K#O@l5iS8R&D7S5cCz2>VB-x(|<2#3`NmY=8b(f~o zZln6(u}MGjP4=0K8NxR<2TV*mBp<&d*FwzjW%_Ndbm!ZbrGKYZ#&6WN`~oQkkHQEZ z`9J**3}sE8mvVUvT4aqFQGA}fuVQC@hdG+L-KK4FYa+lASBb>9?cR-Sd19Z9g5W8 z@CRqTIsDqP_`=^xWad@Ae9?3URu)D8pa3j3F_^O$V1EVa)o|yb;_Fs2uRHQD^~-Dj z^pytnOrE908#k&QeOJAFbs6SuSvd&rv@gl4Nlzx zLV0jn8h^7AIq7Vk)70Y;SWZ)+@xzTTDgCtGaj=f`xp?PjfCBvi*?aL=rgS^@*LT(( zb7nsnv9BPp3;53fI%)~2TC}b6-|KO)dbSd52BUF5bwG|O6O41+rC13?{{8ZXR8U-h zf3*(X?ktb(ESX>Cjh*T|4ZQcmGQmMH3F&pe|9=zXfl>$P$DioI>5Htr+i0(R&yJ9B zvk!E&8oC_qz%DVGH|t#Q+w)|S(q*BT2C9z++`@?P{v4-e$veAiaE0?Y$iv9?bQ)Ym zt{7@Bo{5oD_wxDWt5^{>PQ=qnNIc)*XYOl1ef|o(>Lk`Zy^>x@vkKZcG=&2S?vt;& zyMKaxnQm4)u&FL@YwqOiz*P6zs&pNW*T9LiHUoj8XIj#yLnVa!?nWK;gV0IVkAFzd z&l#9HECZsJe#hu_Oj_g}GEdqwCRzNo{-9_laEZJI4b z3UylKHMDd!DrLZRZ-rwwpwGxJ299}5w0}Xexupl$syEtQ+a45qe_=KhFlce5Xvb29zLfFZvoBAZxDx)-RypaYRZkF(&zri##2YA78RZAE_w;M;$XO2o>>EZhjOO4grMR(i!HLobv2piI9i5r0$z zqUncGaZ*v#&zacUM~muU)Df_zj=@d6S848dc`df=^j_(N#rcJ4mFC_dS=SQ8K1iQJ zCFCgNO+M{|m2&kEr1~86pAtgvO8NzzqgdJkaQe_H5^uw>Q-HW&SAg{R`M&6FA{5L0g3;tZI24M zrK~p8_j$IZ(_QarB?Rk#OSWesvo?GgGNBQd!szdx@jfZs22VV2a|>%$dViXs%?PS% zx`ZRk5fxG}85ZmpLLx|BmpiT&s4hBC!zWmUVgO<5E%ZkrB9wt=HkweQxi+;#S|+Iz z{NEs;qaCS>`?W>70xc##d&d~FLxLL81$DQ<>ln`F>pzc41%t(@0O|cqB=b2pcNAe4}Z89-Z(X!W7{J>j9Q)uXwKaiC!pJ zg_j{3rPUuqPb9{7LfeLn!j^p68--%T+%$(_oEYaWHRW<1%xareLm8A%)ZF-42M9BY zQyO}QP5Tk0@yZaK=y*z7E7d{SM6(TgKim=dny9FrGuLQQV1G*OBYa- z)noz$Uz$FTEoQvs2Y;SIxAu1H*j`^D`UzYc-7sHObJ##tQTKUS)sdJLsfvm1x>Enw z@)IS5ZBHotwPHP?H5~%d;^8)1K%8P(eC_kVsUpJ+Wnu7=^)Js}Zw zt0X-eWJd!Gm|znEzxvUoAlh5i{NbL7aDq{+K&1+QP9#m_PZGmMuau;_X7mrzhS_$Q zVc+3sJ}kTQ8tzyUO4K~Ca$Z*3uL4)z^aCaS>(W?Xq|$F zUmiV!X(H%R-+$i|6~F)^t)(@9g*OMde(Bl8yNxZ1N*1IZ#oE|NJ) zl^JcM0tss{uXDHkNC5cfLR1amzVb ztPYmd*{2|5)wNzT=4w=7-s~{)DJb+$q-43-wA7VGrXxJ0lbkGGbF2inxJ`UP>!$d$ zFLTd}wtvz(MG;Y{p1IlHb^f)mG;Z#}x;^jHX-5@y{6QRetaYlB-(Cel2Z* zWQvPC+XZBt01MZ_%u*}UL(Hg~7(KMS042(6z<+Xv+5FP}cW_mwc5p50$QL+tA`6&+ z1k57qqMUaQ4*&zW=$Anpwy=?hRB-`Ep@Ix*g#61Advy~hesDliX{KFKgL5+;aqMh7tvCRi$L<_R@SEm0fuRIT#3*WabSt;cR80{y;l+9Uwm z5mVsed7gpq72jf~Wn>QHe9sBZ2Xz$=AyGt&RQ>>K3;~xS@1kdS#s^nPZ(B*&wq6+Y z@1dO;1*j7Hmnl*h@=^Ke_UF{wp&bg@kl4(Aj?I67z+#i^MRLue>M4cM7;P@KB&lni z8W{vc9`UFWOY7Vbe&DoXIr^1ITqOG~`6N4AMr+3Hi56pek(bxR*$DwX6wcc=Tf+jq z$RH;zXd87)4gSB%t6m@A)ip7DnU}soFd+!1?@O1g@&cSnkJNHN8(&=#CF*%BQz0|J z9kGAzUS?i&`<$RE-qd7MCdz~AxzeT%7w6O1y;hn9K%?Pz%7+J@g$EuTIC08HYv|Vu zEf^BiN;$*>CW~ht1THUqcbjyAxl{7&t?))l?5D0l=~h}{lz#FZChOdNchFuvrl))W zLs`6YQA&q7_3Y4;R1X-;`B~MqS!GRUXxV?fb>VK+Pn4Ln4Ia{phMF$;oYeS9l3GS3 zFp+Z~%MnCV{I7&1sw~4xSl+Mi7{nEOi)Ch0DKVS)AOL8I=>4b1nb+wg+u*=3k=1()Dto1>K?%DneRLdC8v0iD7^D zx%tiXNp1%bfZfB+(wnG+78K`>^_!t6(ke~4h%CpmW#5-Kd&(hFN2%TdL2y++DQ(di z2Y=9+KiB3PJ0}8CcX5ZTuO`e1sRM)MU6Z6$8_Y#!g{K9U7)+aY)>=okauRFwKFJ7m;3r6~ z8i^m4+NODSqRyj13XqQN95RRgF8rw|5RHSv-)MvHLs zap21k7L0NcE8nhwnV8_VDs zHJF`7 z=h8L8a=nuyf@+qyKxCLm)V`@%$ryk2w)Q_wpKcpRnZ`!Jqlz^>E055`G7W+<*+vBXki;aua_JunkCF#@qhn zC^Lewcaz!n3a3mtLi@%>Eky@zl#Zq=gHL3Ym)dEy|BXyA{;)R-sf*u-p@QEFIBL~n z)ACNi3N^4%P}`D9tx5|hD6UW$rD#6vwn0QblP-;l9l)WD?&n$_vkfsj8Y!_;Hice$Y$GoOD>!)Z`(i@H() z{^u#G6NYUXo(cc-RhLIpAOd-~#|mX`WOH3H8wIgm(W=PDSu^DUCYunj0U&hz9G1~ySqbh-?+QG1b26r;O-hA zgy62h65N9Ow{y&_mH;YyJAg6J!pO!9 zU~dLc18M@)RmD|Q0g@_;>VHbA)C{1+s;&+W_D=uNBC4vUE=dOv6IM_Y2LLtb0Fvse zYQKJ}0qsEg&FKINYM}97JRrwk;qu~Y!fIMd;>?V{<^W&@xB;Dd)vPV08|z(E)G15jPCC44Cb!RE)4cg<_r!tf9X@Ruyh8v+kZP*13;fnKpWs+ zg>khr1(nmq0{C}=U#kL;vorzPIRk$MN!b5AXbUPOC-Nr1{nTj1APNcDgPD-1c5~ zKQ#Z9E@BUwnXZkuuYZyI|E`#kovX9gAGP`Sv`y^ooGqPQod3=U1ejUc0Dq}>{LNo{ayuv90aw-R->p9|LBVcBW>(YJYF)>cFUOXX)q)lotDs zJIDn8+hz`Q0Wbl8jsT#Ci3Q^?!oT|EmznvO8B_>gZwGq^fSHkvGtk%43<&yw_jWdN z0|H!}T!Fsce-8W`!83CLOf5}ZK&=kiF7SV4m$oyr2XOyw1}XXP(0`hM>aVRz4ce!s z_I5U&08^kDJb$Bty$h%%sQ&-iY5&6|;c8=}U}OuV`ad=OUq>TbOB>IByZ(>Md*Cm% zR0{S^wnjGpGiK>5Vd()hRkCz3vG}{Rf7_*9j6nS_Y-er*1TD*7CiP!i$_CWCp!3J_ z*YO3QXJ+I0pD|EdnpoQbot*(}e}@4

%Epz8n93x8k)og!k|lC=M~ZT|8Tw==Of zwX`z_u&{FgjGUZ|JmHx@y}-iG4)A6MHMS|x1h+3%F>zryWZo&HD&3Nil!g63iI zdsd*5TX;HH0PX(p0NE`6fS`$3{Q*G>Vf_aL70Tuh2$K89WSBwX{>aP>s(}4(Zji6N z-G3ibVFqb;_&p4Ybua?mM*mt zci(SLkj3%$68%E1K*S&I~I4A4|gw zivF#I{TBkd{jn76Aa`d=kKgh^vvjsGa(}k?BL#@*Hvv1SIxZGYz(3j$R7Dqe`#%Ce zIb8pMpt-sI0YPix{zvzLqCNhAp!A-9K+t-5{T2txusnV~fiNCH%rr$^F ze;%{`!m2J#_SV4nmZqRb%s*V@jX)dMLx%};$1#KKps)Y_ruQ!b^556kq9+V}&6j0eiN_`-cSEyCSHj~wn&_M)HA3GG~ z?&`gdVVQVE`iLw_&&E_if_;8PUUZWhlSx;WLn<$NT%UIo@+dd?%MTk^SNPP+g57~{$(5Xu6fxIHZqyW zF6*e50b;Bu?D>>Y240*e6@MvU6kMcHaTEWR(HvDD5=|b5(26@AQk&zV>P%ukq#TC{ zAQB-f@+N2ggHBqVsg;Yb~z+(M=BU3)J>@yLKXE0?qm4IvRK4 zkN^q$H5V>X2?U;39CHp|Qzh)}vQcZ4&I+8I484!gB-Q6+4_&Mlw12B%(3tvqIOyBF zGU@S4DyuXj^sb^OF>If=Ge5Y-o;P#IVOsH%@Q%kDM$mDpZGQfKyfm(@iJY&2_k}3F zO3$78TUq_&*U^|Z>i&j9aukJTxo`DR8q1MSvx!$L(l2@0Ps!*$><^*NBJr`4@?f~Y zH>QddXs-(9b%|uyj(-%pn_7zl6~g)WORg`~RAE9=gc};Aj*o-Nc%I+S1Th6D43>l> zWzE`{zG%aV>lW1Z)RVok0;_}MR=41>>tcB%spx)SAi$Z;9R-c)K*|rV>Dlzy5oBN? z)L)gmitjGW9{Vx%s@&aXhPzA%D9loUYTJ`;OFMlt3?}o#%oAHyRbp4`uhVxEcnu`{5b;Ip9aD7j^v68gQDo8#;c^SY91WHq4fdd=}iD}d3ZV> zS#H*@z$%n;0)Il~8RLaE?ZtKnSH!7>pGwH9AIS$L?yU@|3Q%q7O9e_`1{TGnzYHLC zud@aWiRO%P?9*sFZHs6fxS3FM3cZtjK?V>SGR5L<6vZ?0aS-&(Pu_-5G2BX&jClO) z6Ot?$Tm29nQq6ZKuU7b_-7fgG_zhG((dYd@#7XTZ@qcHLs=ZpRW~4zuFW}OfqG!_d z7%?brQ*YY*kuL45N{>{-SRcS-zJcQ@f{(ZP(n!sf6OnhzQtk8bFp45mcXjF&vx#*6 zXoIb()s6$NMPdsfU(-k7@DQ4_D_#I&`_N=Z&w4+(*M#}lkHk2L8Ag8OVW!D^I+Sb$ z!<`Z_mwyBEfD)F=oBF#~7$V5&PRikugvy(qj<$42!Ad3tian*t1n&w23l?n-R^M$i{a&m<*zG83rA%7OOC14AqrBzbPXJ9B?zccMT153@$ zE0PQ`nr6YDIf0qy+Z$+h^AC-vT8{KD<1{Aghss^U_!tAs z$6d}tXcl-2d9soy3}a}6Iu(m8rafh1k=Aeg54tLO$u^Z=!W;3ey<5;vz`w`?Z?k=N zeSfQ2vI79ci};(jm0ufs^lx|x6g-=MO0&lOwR+Beontdv&l+h z`BWPw3H1C1j2v#rc@aEexbdbcSf`#w^gdnL!>GET^!4O7S1`Qt&5M}spR>AV5~a8W zV+h8AbAnN9xrYuN(VZt+C2gwY5Zi2R8-JroNFWUWcWiPI&PkB}w(-Dma;GJ|D@3-* zJ|_|ReT0eQ(m@uBl*F^^twBRE*km*BEeQiPE6Fgo(hUET=ajTB-1Kb&CHZAT!VNq@5( zZSQy^N4)-I%su8m(Ugjs67K#Xg>WLe6a4f#y z>6SuXn-z7qCC++bMP!*mt2Up~T`Qga3GF}4>t-J3>eYYZpz@KW4vwk}-z~|pfx~+I z%XJn3ZQFcYN4rTN1*EvEohOgQkbkIH2khv1YVCfx`sYanw;D=iuPmO4Q;|zlVzJz~ z8D6WEPl#aK2pc0$Ga0uEPd}eg$-Np2)+wy?oux4hFeN`_PKPq?_0;-rQiWV?+l=>< zZ@u-|=@n}>rw~l<0h42o+asKNmlcK0L?+Dy%{Xyb3tz%aT&Lt29yymlnSZag?kW|v zFl)=LB6WaKDs8jeBf8=Vi@5tfdlc@zP6o*zJNWQp05hlaR?T6kv+3DVT`aaJRdG8~ z(gTSS@LM!)zv`jeFg(&Vqbm&_Gd)s>@hDdgl9TI9$4ivqIcmonlpn@Pmi{oMWH{^0 zeSx#p>8FF;u;PyE_kP%AgnvB};4{1wFugs(JKE4R82-@y7Ey}`b(ff>L%QCObkoWW z4>)!~kJZ)KqodG_rb4cPKA5V*@sGg)Q2o2Gu_RIVTY)+Xb zji%t9hBzL?7jHxerGE;lIKY)(QLkJ){;4diYi>%pIo+6Y-w*z;Jzw6oaUaw5zWR?= zq2Ih6eF#PeP&{!F#)K0hrE1tCOQTLZ0>DTeI zmN)bws?!1fWE2yKU1|3n*EUx%4v*=BC&9M^)pZ1k_QW=GTYs??-kI;M#T3B$>a%lQ z(K#YwpXMc#V=1?OJ_Np~_1L^Wi>76eK!G)k)5U#s#g`aKqg~nQ6Wi>ZdY!EMUhi`@ zeGNhTyXZ zjO7GDoe#|%*o*l^&+rPOQ*WK)MAR%Lz6vJ|ELq<;n#SsYo@7d!Is7(+)(?i<#ae8qa#+e3@ehYt(B3ExjdsZ;!*hTQ-)qhL0e*OW0U@GIu@&aN7)tG2T zx_G8+xZ6ak-HtXh%v8=ZRQhcm3WF(cLChR>fbsrx^J|EQpkSywdU!RqI`Km%+V#0=+zlqDgs}+@{^+A%~x6Kq1wsjzYcDk)v&gj5`uh|7JH7@GigZmXpJ?pmm%CrG2Im0(C&we?H zf~v7D`cO~%VVl+$!2;o0 zVZogqQy&{3&zmD<*0N+Yh7;V`KXr*azGG1~v$M*41@bY@IxEJ1{4onvBV_?jCcI;# z@P9Z`Lw;49_buHvpz}^9|$*-5M{(sWG+5`*X25B6Wg>*=yb2 z&tsE|_q8pwvV&&VF0?gC{9$M67QquEO2e2ZV_(0q1tonrULlzHsh=-*yGjfFwW7Oi zC&Tr$Qx!-#E#Q$Yk9VY8ZbU`3F)Oya-hV^w@)rEEk>V3{92wWLTqaU!)CTNRa%aL{;dn5t4}BZH_plf^>fWULS#HGM-L{`OB%oy*P#?F53FeGu}&vaHcWJ{rmTdW%1^RWi$0$sO7L`t$z^j8a52o z_JdAgdH7lzZQ7S*h{dU%Tyg~5CifvvAK;UEEIq|D298mnT=hx#J*yeA7!byRR+s1p zU?g<{+03CKJ*=Uun0rWAn*rs2ZnW8cw)x8D)Jf=_Xg-yMbDrm{wI}c0v+a{!yqwMvrAvuqBVD#JZSe z#dVkuqc<5iZjMWmOmzaxUxT4aZv>L;Ookh&wpdwT~OaCZK)X^ z0dn=Y${xNF)D_vj*bIl{pOnc8m*7WnGd;e9Ce&5IlB5;Pt&e_Cz(9a1Wp5*dYWaBR zc~Q3~I6I&w&oscsIhieZHD41z@-EIX*n*M-KRoM=%3|(Xu&V0`|0_j^MyJ96S zWBU%}Hlgg&hb#sS{eL|$$BzyJnyniG0SOH0Did6pwmzMxF~*;WHzff!Fbr1?m>9U) zqUAUgOKsW1Gn*m~l=GY)(r3BHpnU~YbG4rRyWyrz{I)9FH3jLsySS};fOfLYO@tuD2{A?KFnr1n&HIIPJiI%8XYw^2_e<+1O`ui5d9-;Hm=zxaL~)sPd_?i_bR3j$4O!oCkzS4` zf_>5Oi&Ub{C3--$o9s%rEbqYPxZW?=o!z4p_G*}LW1&BMGxIgQkK@M1^I+tRJ}bn2 zmgQsmM})Z_8Gi#E9iIyP+9&Az1R!oPv50(pyS`#4)fB_|dL$i6S!-OMg+^0hp`_6r zd2i*%s~!u{S}(-Xs8SHvu0tw8FRNL|cCV!~zhBT%ETLdHu-A`eh;Hv#vT7!amO&Tv z+f8dZoWNGL{jwgfVxS}rj(Pqb_u(gs;rD4B6ZjQXk$^al!v5e)EKw;rTS z_8ub5NsxI_5&>Q1sgCd=; zJm0gudvB$}&uSC;uJY@LAT_UH+*VAUF-}bBv;)0<4%v@zuP{Q)$YDj%hLEydORIR8 zb~$9mfPc3Y*r4|gZ!K5dVIg+bf8KtI6;+p$Kd~?<>KNrz9=G%PzcONBOT76==|G*S zP~(CTbK5g>0v`5=A0S{Q-lA!@Lzgv_j9p;U&F0;)cXA(Egr_wW8D?ROru6vwp4z%ktbZkeQqeoq(!c=V35GaaTG|nI>+Y9MA)lQ? zdSNGoBg2t4XtBGQiA$skViXA?wY|sd) z){3*}Eqz=kXpK;a3FPjOg!S}u%+@H8>My{y!=^k}t))`71&@7^lybaVaY?(9uez5X zTZM22vX?9aR$*jgZES&B+SZ9paDQBUlVc*>f>5~?9icuH@1y+_3Qid(hCMZsKeO^a zZZ(qEKRhGustHU$5Q+a-xcAm)VRa-QAmDGPos?sW&PCiEmc;b`*6=j^MHvYTdvf*A zI)wwpQze&^Y?*)3!Re=?LYky>i4ZEPe-SiEIy|G3t$FjFp?dko+gG~cnSX~6I9ol; zD7*dy$}{l7Q_PR@9__vg`Y|Z_=f2~ zO?y2@@6HahdDK@vN^$hPFMkLqJn-Hm9Bn(ARdB;T?}_?ZL(if&qMNgDH@~IFvDn+f zB&S!@fAaE+CJ}f5@_6c(=D~y{m|=b9{Bp10?4K%ZW_Kxs?D7G3;5R%@Mf6_o?2um! z)WV4!+6{N~H{A*s@oQTNYIvJ1-Ou-D64);iZQ#0T=xF4jIH<|OX@A7s)uegjv!`Ks zPl?JE)7{B{Ja!$#Of!@P?*a)WOKYQZH>zRKbvqr}2>IvPf_r=(N`bJgNqHq~4g>3%ZxV5bC}y z@_*}$H_o{;{Q<{lo9lYQ4_1VP8Ize-iv%1jXG64w?oCpu^9ZBWntl&3j+mtRIp?!h zj$ARtGT1GhSSOXaOw{A~5ngj>4AY$+?RpL8VJtJ#(4cjLw14gVJKiF2HiE0@D$Pkt zK%x+xXqbv|9~5e5BVI)HyDD$p1%QeWmTgGkr`QhTQa(0cW%_EO4Do&nvze~XwDRRu ziBi-9y>w((rptvMm%@ARMab~xh-+k9l1h-t?#VC9zgdqE-^0x_rvqV-7I8#{6x3ky z@o0KC{mSRR`+pBXK%UwS8*BG`mi~4ZV^ogO^c0*ukxSnR0a(-HT!b&xkQ@H28nrE6 z^*s$b`rVQoN?XT|{l?T~F$aRW>TgL7C?m2^+?|k<{$)N_7A#*^e6ON2JAdVszn{UpAG{SyWT2)`d$LMY z+?##Pi8ZFJ(uIqXLxtJPaCTu-sBrLNE8Mks_0v*GL* za3n?*qkq><4tRWlma4(#P6}3T#?rY(PXit;SgHhw&0Wn7Ijj0^@j5F)&^&z>wESg* zF9{PN6?GStENN0liHVxRR&3Kh6@}>>!RfV(42KJ8V87~rCp6hKGkxiJi7h&lH_^4< zt46AKA9R&?Me&PQoM^qEu&{IG*k#b54`4gIFMm`fBc3()LuZwcCcMwqznf4~8OHJw z{x&3(&)7a5hF5Y2i=cX{fl6@H$@a9ER<82>DU+oTw%Fnwt4h1&ajIR|6jn?Mft#gGv^g_g&bC&QsP;Y9!PATSD1y zpnu{3cTd`)bR4;pmJ}1ogGCF9#BF#E@0WMyqNvg8Kc-I|$z5D05hdqa*`ffOGe!!QQh2hRKOK)? zUr^n*#CmK4^z3mX%$GPn4SHh9%;HU_%MXE-U=68U^g+6xr_`y*~QNW))`rzzR|wbtWxb+RPp# zd=Apqea2d@`q0X5*Cwr=-A;egFn{=YyyS`bW(#u*TdGSuc8q$ds-WCm@MnK}d$WMg zGNYie9tW@XCgMX6+Vt`%kk3YMQ9{SbyR0qe4W4 z+8b#SRFw>Zb`|9KW=gM7s5yoKful)?K6v3J7$qNA?zNaWa z0xS)Rx|TEUW8Hq%X}KA59Wbn~)iF2r;r?KlCVWeFVwJdCJ#6?i&ARd@r$rL;%}U=c zZ$3q>UiK^V3-^weq)O5`5%x=$ue5Sd7px&K_GwmQBFgLh`0_L|rGJn)krN;X4W7jl z6rQ`9EFe8Vkp}4-@a9`X6~agsTT=v6It2OyG9AZsmoKi=M4|IJ*e!5+%#9BGJW=;^ z2Ea6otf4&zF3dn7j6#NLg!>iV*hXt(Kp1zivMfRS=h<_rOxvlfX^?) z&5MSDaebDqg?)>2pnnqOBl?O=@|9$TqwChQ#g|<(XsNGAnOc0AFB^%0V*Nu=*ssW5 zFxu*hxledoNQO@jV5P@&z|f}E{i5<2H7{teq!jj?YK}n`=}&hPgIkdy)^88DGpf2b&*o0*jx*1jc?%Vt7G6`dLqms ze&l_vw1o%sap8TF+Oxq-?l*B$rNAd@nOWWSYyXl%P;V-ys-tN;D6=(XtNds#d;T$? zRyDIiys~Y4{(t2tb3P&`1^9T*XuS{?q|(0oKw z7}@1up4inRNf8$3epuJ{vXaWkc3mPzSjMUBruAh_$a;5I(V~31CEu;|lewT249dR= zniqB3+cEA;@x5gXsX}++lXuSjM9>ymObx|Ivc=rh^UiqpGof2uWxvmt1$MzVK>QpX zxPFh|S%29Rj|Ca&lKLi|NFoUq_6D~dk)L90)Tm)dhtwbTqyy8!&t=Ohz6z|~kAKHg znXg7NZ(nJ!Z$dQAc}o8wc3pellSTT7N$lI`5w-jp%cQ1{UUb6YyIxzRaWoPY*tZ-E zQIAzjm<@G)QfEpK9)i5Rz&*hDp~3BYLD`075P!9WgI&8kHsF!U^Ly%S*;z6*#`|U@ zr9dkJY7>W;+5I^;e;EOzc7nqGipIv>Q7I-4fc>B{RX^ z>VH^D`w>*%G~Mc8E^>OYZ~_gNhS69L+i1=>72CTIrH|5|xxqRK4pTGi>(|waX zb)n@pdC8UWuB-iajO8asW~?QCtr z7um~&jrD=5T?@n9Jr|x&{@I2KA%{;MGXg9XzTBy2L?FspEvrWK6>lmK-uN1;7LGUj z$?jz4_QoihQ;%pc2O-QfaPggc7H8NS(Cru^cQf7pI8!D4Q3=Fh{vhoZY4S0m0y3` zn<(?3D48O&yqk{7!E)4X$@pZ8?&Z)%+b>D1_4)MJg@P(iuaz#GK74b^IHWCZ>cWhHY<`M#!J?dbTnl`mdy4O!$r&`l2o5{JEy6Z_uN zdY|SR#L{}UcfvFFB7pEy()}pG&$*kiebrp~b`bX(d#3ANa+{$nhc51YSbr?dN28+t zseP)$fj-?X`_%!KR8dE#s~hS0yoaA= zodixYc7SU{v3B@GN!ORDH-Fxdd`c-x`neR}kgKAnd{MvSYD@9TF;V^ZkCKpn_G@$$ zr`8Qcl8C{}@k?P5PiO&ki$(E=zU9Vi`~s#FbEKa2q5Oa%0wZe5k^qv384KbsYq3!H zbk60})U<=E{gNd+^O(s^PDcw-5}*AawN+tR3le$-^+-OG(L?Sm>3?_fZk5g*-Bvtr z?nlLfh42;{7D-w#Ks2qd??=JDYQ@I|BN2vk5PPH*&O~a^B&krm263wo)(nUj1VTX& zxdZwud{yXR>h7IZQ*&A!2+&B1k>(U^h`mO4h>uG+rH(>iW9%;&;A8YT9zA$W<{n2w z80fkv0c8N&AEl|;LVwSmK2sFOFnvBTG?jNF6j}zm%XXa|Cy~-^jJKJ?M+h9-SDuP@ zvjZtUhZI#W*Ir-A1V-fas@%xUsxp)OH$5UmLvTRyT|KzYkS7I|4jH)^;;jUz6{Fhut@?`uA}nSayKJpZIXcM*zDF&h&m zwyQRyx1I(hAfC>=QoTyO69G24W+~0cE~2drDZ%%wA}};N!_v08bo02M=hf;WoR+mk z){&*9396O!tGfOu-|e@cU1}3^ZVa7M&B#LoKRa>P+Q|+kEcTwu7fWXKl3OYcdlS>E z5*>UCp;{4UnSTg_&~?m8;Rq(Q=NI`lj*6^U2rZ`7h)0f9V!~*TL*=oD_3?XGTEiEu zVWDnKQrb@NX968`H=pYdl4yGc7)P$fs8gL5ZNSUjPM^zhu$5S8Le@w3$WaDrXRj~w4H^~N zsrW=ihmHhCsy_j2C`+spH>4e?9X#Pbm1?se`+wu}O!T%*SNhav%%9n&qk&@|;gA#8 z=)i9l(0_2gale_#WQ$r>#H#EK^x;m_BvL{riZ3~xsuX=p`1a=KhmDVhaToa?Ug=m0 zi(*xClEkl?&gyL6iPjFi$B`c25cfFuoK-)PJH7EKnfGgr~&U)VsQglY$b*7wt%93&#(_$7wN9FSr&{dN&szAO{TT)ydC5kQJh%P@U zg1>J}+kj18CrhG!{!s2!QNNA>93nDQTy979gSQF&y@rz^1EvPRJC^S9Vw@dQL4Wz$ z^pmMb?93ul3@f!qTrJsE(YE+H{tx|5MSGf0YS*!A!>u1JV5m-z^GHP%zTTLzZD{PV zO4py6R)oC2Ik!?F;|qg$9wq;bxM7lj{9Ku?2ugdyxtTZBRD3l z3(J(F>&6letLZP^RmVkw?SI72-(2}@Jqi#(8%yr{PHJ{;3|d|A96{dmhc?VRu)Mu5 znS_sya`TNWP#A_zR|_}p7YoA0*655auswMYW~52*POAWf2V>5CnBLMIBgAs$&N|C& zW3ZmW3dcv2Y&7l_YRr@fxGBQlvUHSQ?3kDo3tTgr_~_zRxP6A~Lw~6=mwGP%uAzS; zz!mkV>O|?~9;Nu@gmB=~L$ZI4fBEEW0Y5!{8PyM^FSop=coz9*ytx$2vP@>u&zOtN z2|6lV{!q&fBIVs!TH({)Op=*o>d;Ox97U^nHP{WAS~G)GUu~1ikfY^S>~|c{GhKZO z-m(^144Yxah_}snYkz5I#prE)wd=V+{nC~gsY2o8N6EbmxZQepQ@lj+u;UXT?4m5G zn>g?+^o9gOT+?BSn@yaYEN)w0VsqsHizLApbAF{vd%!NW({0BvfXFZwTH1QgC@b3X zCK8Y9pbe59SE5LZihz2)3J&h5-f2ylA%vx(!RtmY)OMx6H-CE{t5JHwkJ_+5(1(mjar#Paq}1>7ysxE#wWS0RMTQ%+tH8ms@1En#N;5jdFVU5=NHwW(8iT(_m zgZ|e`CrWUS0e=~xkIO{|IfO=JMNMl@dr_V|Z7ozTG?5%-|isv(G7Y9f4MZ8|z^% z@fQ}eT>3MQnoP~3d>D$;ejjniU~D+JZRK3wjCjbg6@QSDYtbF*s8<8qmd%8$!pdHP z5+Et@IOSgFR0I7Uj5uzesnho%Xi^G&jt%S7z7aoSsNBvt(0RqsP~} z8qj|_(9imPd|P)^`|=+Ai@4_o3BZlist!!p(T*X~mM8c&gYfh_OpPpZ+Wz~zm4+P- z_D~2j7JoXmK2g~CRlGo-P)pR37p^S4bM&LJSGwyS-G@#L*JI()A3u>80vy$GQh)Y- zyT8|b3DOx-D5(!|w9R7XsABM;Wt$^lWgyZ^vtcdnZ=dHd+_e~$p{V4>zfei$UluJV(y?38j^z8Z0KwwQi{Bx!lZy8sa9cEzgql+w zyOa7=c>3{@7`~fUrBR{cmOX0HC%J9nxd7be)6u+cO*%Li|uu> zFhRXxuQ5_x-in0A_&_f=c`&o63%)Grk}lF;9JUm`T&k%v_5NHyni%Fa+Q@A z>*as6<1>a&9|n#0P`3~Z4LEp0*qo`MbQbf4eZvwMMyzl?Uh0vlWSCB-8LMPq6;V|< zfMNr;j3t#4K$`PXJgJTbDGv62+xvlhA*Y4`$n%VVtQ>ZeoayihLBQ&x4wTSJ@3OUf zb{O2gzU<__D6T3k&*%c}9Dim(at83Ot3QtZOcrDeH)R_RJAw~$zn9st4$lVM#6K3(=YNmHF0xLF@*={3Zm?h_&;LhkcQ;K zO}yRwc5F3eE}zX=zm7SNSFOLbC&jO*Mkxe;O8uEs<}yUJ0{k4|*?%w2Z&M!q9%~U1 zM(BTUX-rR0dMV>l5(bN8GmDI9IjCHB*7kB+bq+C+QtTqSsB7ZS?Q(nArG=pz#Urnpmh5$Zg zH!>}-8lotQiGf=zJ+woe2X3N5`)rO#@_u zW%`=obu2+YT5!>bB{pqEJbjM7fU_c^e#D)H`B%{#$@E47AM-V%JdT5o6~u2rHIJQH z{vWPy-(IOSGY0e-3$*x&eh;1w80tM;e}9SeW2AjV5zrbiw5J-(i1F9ZGf?L~qzrNI zB81^^9UTM28_PDlOImM7x>!=vP(F0G1Czb;SSE-lg#21lDb(BgaN0Fi2<(?2-w2ut z4NCy{1n5bGsaI#jc61>*$`l6qN4y`uTKvQqy0$Mjjp=IAZyDn1rX98F`5en8 zZ*BzeMf_?Tbu5d`Pu{-!JW2f=D6pP{r#i+Ox94P?e%-WALo2!Xdl3Osu1WCCz5L(7|%uK=sT7<5V7Qh|vA8in_v*&?t@G>2aXu;Mt z`MF#wO7`%mL)V3`L?GIzDJaE{O+-rf=Wbe0+5VxF0&Uh{Q<4$I zM2Q&%^@2_NX;IIs8f72bBskSK$?|{39w$Ydu=pQNRA$owH8idmZ8s*}ms)9osieG} zZOROLLmC`94+58L35FhsvP69msr?2yQ+XvWPqudqPT+V%2iH0py{VM8tI0mmG0eW}B_&#i|61aa_yKbkx7Pi5`ug7U9I7_(^QDF) zB6HKVOv(35jZ8YbwDTpbWu1Q&gyq~%Nel#a>7s#=1BS-L^duo(4rCDx(KnP9K(y4` z_XEAVbe#idwY>faE*|TWUT5)rl~-@>l5<>Js6hSO79&lj)U32 zGYJ`s>|u^-=mfcE5@ltIKR4CAyF^$a`4}C!cyW6pt}oXucRF*}zLtNzpXBsm_0zqX z(dW0b=x?99k*y2qo2j>PFrm_hPQ#g3YCFlqo%l6V!}b0jZxX`_OcT26B95+QLB6*= zct5kX);5O;h8BMkBS zN`_!g=s9|Z#Cu!2hRY?4+2y?w6=RIe1o-FylN2)|!5$&Ho>YEG1(V?-M%zFWd?Vyo z3-ji2tK=!86HZ#&Emny7oAkOMWmYXX)G@@Fg)Znh);52Gja7f0bG!KnWYt3*RB1c_ zU&iQd=W0nqHGumKN|bez$iY$18kMVpvyR(It}4z1l&V;dzS`4w8H9X6fyVLd-4Va- zyoF{5eC@qv+WS6JX1|~ZLMEdh#`zbgE%U~i z@B}b9D#Ny?_0@m)22`bOM#N!#I9FeQGYm({_ie(4Ij0M2e8Vo>W*$yp()aDGwttoMd$Na+0b(=e4-mm7>xUB_+B8kKhR}`19Ch!`|I0BE_K|^le;2 zm?(^?>$p)9?L^())82b5kCPS}kg+LiFQB6FN#C8|y4@cVOObq2Ko2CKI^tD!G~**9 zrobFG&!2zUKNq+?faeBNM#FZrUE$2&h70bXt^xAwcGMu~q421r6Lz7nru9mAhs5lLre!Rk(=?oQT>$n(eDwxh+ zvyhwuFcBhRsMP_f##@g8Qx0qvw?)Kn%0qjx)kW)n_xe!2{_d;k?R@eA{)Y90+dH*~ zhv$DNxt+PcGz$iEo2a;`_O-=ks4z}tzaxe!|r-CnUN{|fz+p(9RFdu zY^&n?8#YNG3;99ex!5Gk*SR~?yQ$TT5NYnZ!8w$C#v4c83MFn_SE1NqXRiJBKt3L= zvqgwD25ovF67U40L86YS=Dar(vUTrz(V{Xpm>s?Ly{;#wvTw2HV`&JY^u1_yw`1OQJC}oA z!(ABazlczgc0zyH6~}VE!L*{l`uuTQ235UkIfL++#e}HOh}PJBubp+lX8mTnrQGKx z1B=~WxHt6XEK_7OECr5XHT&6g=*)j)fMVUAyo6{c+~GkMGw(Le{zp+FC$s^0Q+*Eh z63eitkT43D?EKcx&Y8iHN(7UXOX&!fFB;(Y_(2!%X@rCvGvrQ(rjk1kA*7;vQ40jU zZ^d?%bgD6?Du^yfzNQ+#**kg)OR;SDv{h%H>=x$~(=xG!v?4SV?>BFjSR8*e$G0Y2 z9QHkJZ2SKMHbBY0I9*N?;QJC{qVd|E|5#$k~ae)A&9>d?W(B|zfTyD7?3c2mHnD3_KQ|w|Vk9Em+=|7bzNXYL_O2Tf)_u`@6Fa0zSQj`Lx zmdG!s!@$Sl7y^#X>6dANU-6Rna(pmln|D( z3xzR2o*CfXP3f;EF@S&XZswLp{nD99V>=g}z;}umgSd7LAX_%C0FAFYJ|EG3E=ivh zKHFqZA6ezn_O%$6c7RgeO#i=AJG(aGR}4LUZ%)#wSOs!jz^f;l>i3>V+?l~GEgJys41!0AEy1>Mez(#`Ft|L-@kmn2LYc>)0y;i{@1D{(NA>3sAh$C{i zlm^yPIrT30j;1R=o@^GDH_cC&Y|zhjPl51aFuoPDz44=h3JSSgq+o(ltRO}*^6mGoO+L`H77XS1nAGE761&YFZ zYxo$q2w7HQgk)s0R)-`DS6Xbo?*>vDJcZnuj5BcE`5UUP<{B%ohh%B-cZoA?#sNnc z0XAaYHUNKT&cw!~rowft&$$aL2fO|lQe>rmdJ`n7PJy16$6C{*7J?X#zGy`UB$*e2 zlLp}7SsDdc3nPa4GXL69#b@g8G;%_-m}HHq`>;TGo}aA*a6DsdDaN3Wg9 zm$|te_W_8Pa!JSy0uQ{kOf6Gd3TjB;lolwZKKFmItEY0s@jMaKMgW2(fRF#eyIWko z9^wNvF=0qAaXGF=_9IIIn233hAu?FPvLXOz6}?y8T)|t8P!cIIbEStd8arJxpsQah z-}n~RRvFuKXp(+gBjEyDHeV;+ItHdomEwiyt&`PgbpS^80~sPxI!hGW)^eGyTR@L| zF{L&@W?xVrpF^UiDe<@MHUZ^iR1nuKR%oA|v030W$72EAsvrh8TDtilM*DvW z$;4Q{OCUn_r)%=WOorm`^HSg;OPZOo@HlPjLvW1u{+ERc0AoSC!=$H)D(B9 zy!X!KmL|AcFcdNIlDuhxhO@qn&85z;;iG?DOmtM$e>QNT6j$X?vE}PtP6mI6w+6a; zamlQKqWZInfm{EkQ;Yqg2p{Xi_f6Z;I63l8gOWy?O-5`b;T0-RPY^1Ai$gR1UHjMl z90bw-af)rUyr&;~6HZ1>a8{GDf!k`Nb>Gv8RKsd9$*DHB zjT8N^{anLx1F_0-t{|LP7>}Ko%hUH<&mx3EpEPp(RmQfn5}Vl3WEa!VR6dq zFT8R0ZFD9@2*}HII>!hH!KmZryv>?i7D>$r$Ypr&<{T zx?iJ`wrHK5OoLUn?$>Vby%0)rbVIO{<@f!1u}P+ad(99vp3yARw0YL}8) zG(F4_3x*Vt_yTw08Eeldo5hP}1cEstJFj155h{xzIvAix_X>n3coyzuqcF ziOk19ExO)eTtFT{3qw(`6p>CiT9~Me2L&?oIo@W97-DagVe1&_aJ7O!Erae28K`V< zaRiaD;B*&X?A|u@t=ccsPn>jEJBx3soTviD++=-B zr>+=u({t;-(EuNb0@lAwsNwaCQD2|D`ya>Nj+lM*TTK$H-I@j3jFZnRf(wQm98(>7 z*rl(hHU;=L1EBxRVuH#fQv4r+<2@{bru$^;x!dw{V?`kW8-?{dU^VWz|CX_M5*~rY zBXB1x8e;Ox7EFKTT*9Kehv?}m`09`p%bVE$z)$rm|6>at+u9@OA!I4GmzMywoxuA3 z5Q6XZD|d4Zn{jD?$GJF>GHl_S+`$h$r<<&x6uuOlPlNyr!XCWbap~_vG?;~Z#V52t zVjT&skFsaflWzVo7;K8~dLsmjS~ukvPVzZcu{e!(8IXUs7i>x~8VpkH08_lO4WeH) z+c3YrfKNV!we}r0=%%nM=#}ROt++m{UrO(C_23&{=s6n-U59~6~|XHY4U z;NNitOjse)V8L~bJAIEhIX9kCtFb~V%<*U>L9ZPaZ6lhz(Y`?yZI(zLr`4za+4bJW z7xg-H;?sY|w68Y)BgxGW=p90QfdIO;-mwd&Q9*1a#seo@p-aX7rAQ+ zfOsL6jU$EKdmwXtHJgx1bC||8c?VjDPNRk?qzQlX%0zLtJgzhZmbhYCoM|&!mxn7Y zO1*dkYJ<0U3m4PC<=I(Y5`IMKduozzzDV=L=s470-yN2=Oh_(RFpe4CqmVB=F$5fo zI*#?90+)7OK27Hz48sd!$@F=F`>+8%hbjYbcu43!)K??`P<78dt9;i{HHf;_CZtB8 zae;r$-GKELP-+mK5L~|!bP|VqZ1aiq-}hGuea7NFT>J^ifV*LFCddYFk~JrfrT>|b zqAtaJ!~nx&cy;8@Rytk(L3EIPV#6#+s|9`}eU#Y+L1|N^+pg{xrI$nmos&wNmlkg< znqMuCS;vu~ZrE-I*yOMC1tfDE37-DK@+N;jV}|^rwJITrSjAz=5fA{2dt~+@O?6%S zAXaEsL7MV@kS3@esp)1h2fgY>{fpwqqw}=LM|n$tnCK!X&bch$wvmM`lhk|k%}D^X$P0*5E1Zd}r41f^S8pJ*E!-O@w~jo-b5 zw*xd$F4wf@j8)(VPRxb(jmh8azYN%{93$_32bLi|^W z=3f{@8DUs9q3Xd-$LT22W05K+GXna$l&!)J*GMDfSWZhn8|(-Ooi{=@YH z*^K-LdyqqG;be-L*INv3R^_2JHF%xFs%$J{^q|pM3oZ|{=gvzPuQ%Q}O8Sqr4ibuc zs+IDcTn!ADv6BXbF|k6N3JLwLOtCgNqxsrTv>u4rnqg^9IAJ%K!!K+R0584a{?p+y z)jli`WM3@E=x+ZP+QomlKFcM7_gts(y5pzk#OOqI2g+HjEF_xOuQNvtSahU}dMs-7rBaE?iiE9~*>ewoJxWfo( z+`!*fhZ4{HLoi43gfPgZnB^*x4s$#w1W~oAl0H>1FKb||+vk6i!Ec-l`c`17>lD!X zZ40hDd?n<*YDi2OUp4UkwohKKxc7c0ewo064L2MCCq6Z8Ii05_tUea4&?!Fol2=+P zZ|4{fv8c0SzZa?g5G6k{5GSwxdAI4KoH6k_h{G*$ow}AU%-Z5PI+1k)ZLD|R1}4xG z#F|v>xj4i1v z?kVqy3t@j!@&qD}UMcAMQ-UXDbkf%AD1!pc8po?3S3@se$EYEB2rNtEK-*T^42c)e z$j$ko%CUT?HCcV{{<_U}9!3r$;a5~0zcbnOk3j3gxyRe5ax^<58Q(d-FVe=jLu7g~_zQzJvNnrcB>;v%k?;R^v` zKCUAWKIj}uF1V(@u7s4L_v0mrNa=6vv~ny9xvUlLP8gtv1-^AiVUeee$+Z!>50F6{S3Q$|K6+M=o)V_lW_?n4y3?G+P!r zkR1nK`oJfzeCdZI;nvL$G4AXE4inJnQpQa*CU_$B5knVRq;$luQy+FH;F!|eE*3{7 z=+enja|D`esg-^9IT2I&Isa8ereyWh&+u$plx`uew_uO_LJ-EzqB+9p!jt*dN1%U^ zQ5};2n1_P0-HFs4RY8p*HCr#(W#6rbBJi85c=&4nXMOTOsZPQ3Z0|amN!bD6Im|-L zV!qng6RO021O;=3Uz5d{eC1R1NEbyQ$YD)Su@YG-!a1WBM86U}r;XMX#3+8(-9xr{ z#gDl-YVRsuwjT^5D+4&bMk+KR<0OAe6x2Hs0lkIgY-uw_P2l{5oJ;+v4@Kj^&~4@a zxk%U}Qi#9Q(q{7=)G;;r?9jhXYPhM#rn5S*Y`8+6EbkrUYmHe5`Te~VwLMe_36}i= zKQxo07z!&}(nL3(W2qR7p=Sd3@MlRU7OK12YA6uDWlpdf&m1e~P1=J_B9edYb`EL9 z(NuNGK*30wyfg2_c)+zLGl?&VU2o;u`SEyhHg_PU-;8?>n13w~L}s%x#*C-yUpMN!SCm3KSHEU#mZF0pKp{ z?j^qouK242TU2Lyt;|((ROFrAgR?^C20#6Sk|Nv z%#|?3`U>N`R(tZ!4F`YVV@+wEY$+bFP<)*w*`7cjTueiwKBAnyD!Gi%FkRU-*zoo4 zHd?&BRG)cKU902APMrT5!h0m_-DYbt<3#u^9|xESv*<^tbI6f)=ST;Nidq=`H0Mb| zZ=wmyAF(9aRBLz=x(45jdSQST3N!#n7r2I}8zjBSoJ+wl_fLQ7XO97lrKP#PPJ!~q z&0^-UssGU5ngFu~H;6z%Wx~iE?=}msw4=Huc}cc;;7b@7j{VOBCcDY8fkg49a@uMH z!i+`@qNIcAf^CQsGGLnz5lE%XT%S)n;sA$vm#+WJK}BE)IT_>kSLTy%u&=}(g#^`8 z|G`yiH}Eg&oEaf$NO=X^N74XG z56iz1#?^)LE2yb?9;zMD1NEOT)Mkdeg^fU3?i9B<_6eAa#uJpMPiv95DBwSKFO6N0QM*8r1 zFJwJN!!Lgs|3fJ!(Pppm?WS~VIs;>-KkP<(j9GBzC}z{SfA7gufQBNP+QgMU?)QOJ z(WF6Dotl05ur`_1Y(%LT^7$Sa>*ljL>& zHSVNQ>|fmrwXd@rU+qP$*)(@2JS7|EZqN2RF)eGm`l`H!*kP^VdR4b=1CRV<)Xk~V z$1U~Fz)n0m48hOON&)%4`i`<=z=_Tfbj!43N5G3x3fLmt1eh(#(-O{3zJXlb@#=1{ ziAsOyqVhY?Zp#aG{c*9fPk{DNGW$Y-)n4}-*+RB(1VA4UTRRPHrjz~uZDS2OVg&{0hN!aWA06uX^6MS{WInlfT`Sawx(xgkp0 z*UYFdQ?K{Gf0?#&#?6D-X)<2W2bOa+#*BZ0%w3E6szCEv$m9S`r5N?Cue^&IQXWgl z23xN=Kl-^OV^w+Q&r-KJvYUhqD2nm^7wVC%3K0T^OSg({0-`II`+RUeHv==`bZ#Z- zI@3ljgSjC00qkg(r#LW6W`zD9>?3?$9LB%?sxdn292u5I?WhkfQ40w6-5e!BK{0=P zP<-1b>WUO{)acn4<}8@suujS?#nrde(e5eDNl(fLdrXmG?S2V`7@@lS8(M!abCNyq z-by7wM7tCjy0F+0$GL1i&sD83jM;pqI?8MnMkzy{Yl^bBQv3C-1#a@GtZVA@FqKBe z$ek~^mSsG%uWXcNzal{5ryCR7l{9}uvYmXe1Xc|Oh4(&(a{b!4b}ORDZ^k?D9Xe_d zrT#dZ8t@bA%l|G`zx;zUxHf`b(WAAvP#m2)W~JP8MwhutN;zPI8ladc2G)5$#?63XX$@-hZ~=LB1x)i^Zt_K`?us5ZL1na8w^^V+FPu60lx`J zxkq0vh8?qV_Tj#?PD zBXR`qv@D$Ska-*P_N;O;+)y*c4#HS|WGM(*lVzPq=uUP6NmXbcyf}X$xdN&V9uK~= zzeA18zEm|oHuUA28ww@>?*TBcuyt`%=ri;z48OhoZZh;q%g{isa+jXT88+}dGU9)3mr_=RhOdukz&)R7 z(X|n^uU$w2dWEJ-;Jh(LxFl#=GfZN+YoXGN4!@Cjo^MFh^lRsVQ6TT-n6r~x_4q$a zE0QAIswTaS=i3qefGV`_5D>(;7dPM5Rcxg_Y_p8ByA>Me3(a6gcVNDkgK>9?dH~h_ zG7CKai_DjK(IBL^HqZcM6AJBOx8$lzpb++2UTyZ6Q6<;Rx0lN9UIoRz7a#kua1i$qw<^Lhs&mVNf@K|ridAMG9l7JY{Sa4Ub)z*YFo9`@!B_YA#`@a4nX z!he2v7ZcUqJ}&eMcL2+G;rseUAXaL>PSrTs7iHzPO!IAyD@zKUux z-+i1NmV!9S-Qchj>0oD3(5@=9K6_3;LWSrU7+#(?(i6U#yqyJSohb@6YJ9f0i;;cI zr|!03LT-O;>^TG4!~ce(6~6Y^n~VlrFxkXh{l=YvprPtPrO26lT733C>WfhvWxG0$FyZi>k*HYG~Z8lw0Znr&HQDR{yyJw@3`qO2O>M zQEJNr3Jq(esSNQ)kTQ+!!E4S-D1?9g(DT)Y)O zclkp)xu%G{dHv`S)8BUN#{`jSUk%H6bA0^wR*cTTK*U6zE5l}#?17ZekfMO7V}Zdr zYi56GHIeoYNL`~Rzz_2iJQ1ZDXMj9A*+MYDbn+AiML+D#3iXT?``ukOGmNn8^b4Xl z6vf*m0>s3r8^?(J5>ac&TgaLt!pH@Cb{@oXuJcs@45M)Re_k{be9Y=*s#?1eKAu($ zPwq!@y9rF!YP^z8oD*NocS>D7EO#)kCvJalZ2|3-d)fZiT9%+I27Yl+h{VQQ!E&=@ zVbf$x>{NawJoOxD$Ry9Nr~VU-j`d`Yv7BDVaLA@1@NAitqMEQMw+O%#l+QUmuf%>R zPT(1ygIJdgZT!pRAe1Pm_ea_Dd^A0{eoVH-Imtzg);wg5Y|_L+XE8 zjT!I1C-aQhby3>4T;50GQxbpvU>=Upt(fWPs_84g21WGFbQ)%!fuZo=EsZ)nkE-nV zgPkBUoV;H-hkVn+$=Js(QEV=NtFKRNrR?N_1LVps1^f= zjiO#h0(lwa?H2-t^xgW-Babo2(fNNU?IW*z;ISsZG{O3bYX_SK2@KDL)){{?KVX7Q z6Ze))-t3o@&B5Ayk_fW<_ZELm)UYjA zzf_TCuK;Uxb~J&*tPI0Bcpy|Kw2%Rs!!-ztw`{0JrA4`5*mr(vhlGh@o>ryWKISBo zGgacEOo!I$89}18hB!BFS^D`@Q6&~x@VepzIANeMUiFNsMSv?UHPr`kW_Y97D+A-3sDs19G)F-ryq(>1P_J_ z1MM?8a#6*2fv6U;IxDu@b%dnieE=A}O%pe2ceBFFLBohEvr~>0xx{ITEWSp#2$r2v zmp~tW%ykL0Ig|nd(@}VWMX|Q8*lh&F_)odZo3DZw0OAV_#)Z83d5nK0Q&f8E;d>uQ z;wu3^Hsc0Mcnnk2XVCseRtrSRPx*9)Zci$>^x z3{J0SpUat>pReew1u?_TD%!IE+#pgn58`s~d3JFYiMa z0$!hj-0jcz5A!Z6ddMI@LK0dgQ^x502)$al5WG$J99$_?JuyxK!1eW+kG zUrt`(py{59v^vP4(>A)O;D-1I9@S5dIoM+9ve9mpSycfxF~%;+Og{3NNTkx{MmF=URvaR73=DYm4MzXfvgTF*#4zu6 zF=S%KxCeSRf2e=ZQqtslmnG_)LY`8=4Bm5<3N62ZcT8y;MHe)uov_?6W)ET*e}oN! z9z(1>9(9jOI6A0-YJ)I}&na5EH4pjBM0@1jQQ$x!vqgF?J!BjH%c1{K#ujNO&$=V5 zb~OJNA7RY)Hqw!*Wf%dGCTnD1maCgwzi>#M# zr`%YRG#C}s3tRAWYw=P)FtmY;4D)ODL364d5Ny=F91XXh`_l`^lWQp3Bb0d)pCjuZ zohkM9&1d3b=ukP2+Bb`bc-b%)2BkpaB!;OG&uHA z(rF4h89AR5xjmax=pN2WzrUebuzuCaJ(q0C(gu;Ra^8M$Hy?{!h>gTgx>g56T49!i z^#adi%i|PdQmtR155VTN^T?XI;=?+yo6hdj*W`cwLjo-*OHWHVV@SO-E_#5ffZ^_dK-P!7pqC!zBc;#4{i;ud#eZ!Cf^^I(Fhf;DiJqIp zB@tc(O@L6pd{q`v|B@y-h zjpEpQRhj+}b}5N5Gu!H1(WgYe)=qqlbAUK!k^2Lbdg|8MXARkws-NW4CW=4X`0=Tq z@y4>Gu*qE8rdLuW8Jx+j5!aw75HuP(jEsNXhC&now4GOF%>pf~z7n4sEB(NI?cNIm zPWnZ%&dw;XBGXLYBeR3!mlDt<>Vg}VV-I0n*(!7Ej*0GoF%4n$aKnk)4+RHyRi_uU z&K>l0d7N}f`j1yfdK|lt6OSJyN_XmXU@UDb)YpJl7JUeT3V7il4%<2`cxK7>=c9iy zpm}?A=TeC=+^KD%$Ib;0y<`Z|Dn1NlqUJDmPAU576NWDz{T|nU@P7J85(f~EJxzMX zOUso{@1bP8l&cHq-f}mvsJaN5Km}1~JFJO=qfw9CEybjDr&=BHlQfQusfaaCB%XK4 z%#P&F0{FeZV`e~V=#_-Sww`poT%musW^v+HuwG8>uyGv>9fx&;Hv`4_QoNhJVE&Dn z)osJ9==iysBu1QprjGmJLtzAftt4rIQ+Fg!aLv+Br*{kH29Hz&tLO!*DuK?!O`TN@KmmWRrjw5w zzcU?FQ!{>ygDmv44pz(yx!CfYcADg4G;9zP!%^UB{cva{9n8-u!4_TeDI1tQXA6jR z-rna~qPxncmwf)tmg8WBFu3K$%LR1@-2=q;xC~k=2=A0s7k#~{FK=OF40NuVABHs| z5%Rmg17cO^JfDPq!ZjI{9xQ)+XwfaH1a@&xCP8Y7AI`9?=qGy~q&Kgm*s1v>0*=>t z%YI}BJ#zT>cX`!wLhNY4$1+6b?^?mVuBkKJeZYRg)M^?)x{LKm^#6U$rQHZ^2M#29 zT^-Fcw{<7$iMFbd8HE15z^<6|J{VjYfqi-ADctwqc+uLFx7cHE42OSfT;hS_$`_ZJ zhy$Ay$m}1-lnu2ZTU#fUICaEn!gV>qd18~x$wEDrZS7Aq9U@mFsbG=KH$Q`*_Zkr^ ze8Dy*t*fMjqPaAJLqHTK(d<<95*hvSt{>4Wc>|B`3uVO3ol)U4IOB$Pug&SLR)ZPb zZ-wTsXzgj1J^BGVioSni7FxO$R8dClFUujYG+G+L2!uYE3)9j_hb3d_77k9aYxy*r zfYI3Chfb90Pa-dUJsXF1B+x9C0Q^^S`j-~3i&ai13N;rq-F=XdmHAJRZiUq>+-0m| zV;=@_5}?lGqlYTm8od|5HZTTIt6K+~wZRVa_Kp z{ojAjD(`&4vF?9xmGp*Z-wL0!*S%TkDG}_|{0);s2MfcJ$Dnt3ZJ-pxcpGZirgdOC zr!;!{xXKzk#;@CPRxhrcua~gJA2Xw~23Vds-n0TZ*It>rjNhnU9-9G{Y4KGs#|8P3 zM}^RQHE$XN0{bc=?=#}9diN>bz*4&=qj6ct6(_k-EI@zV$t*~k;~UATgSw9I!sNC* zc=b}$5%>Q5K#41ef zG-cUES>J}YP6uqtwgN|gSR41xxsb7MRBT|^4^k^Rj~4LzI+r2pkFM&q=S3CuC7!N7 z(ZfTZHlBYe^nfwQkl?nP>XK#If^L^+jYYdbAI{ibGo{YlazjaAfK zNDvK9#W~s4W1c-E=ENJ}Ik#bn4nOb{#|ob&24qndz$>74V7BXn!)Phq&LM7>lWX}h zw-~F(6U|A0Vi*Mb9*y{5$n7~F?2xDjj&W+w#bSTQkiR6#8c4Z%HX_KbXd+m_=PB|e z>;(w%?H9WQbf>)#(T}O3SW@z{tc-NhPKn9V^~q5bp65Z({0m+~tVt4*ORt3mi~#S#^>a9r;3p3pHi#+aCnL) z>*s&EO;jPMC_8Eo{PKtmRHq`-_P8#9#m9mm&!rYTcyYPE#2)V#nx2(gq2vksTCwJ7 zh0p)LG#xR$PGRYJdD)L%dC^U=6X5EbS=7joSe$?SpKkGSsigWq4YpT`@to87G46Ez zOjrL@9b61(0p7uLv|gyW-B4xDgj=rh8Wu= zZLmJ0>6X8}OW7*r%?~CvBb)s1(F;E7TTZN#Nky&dZBZlUGyrs6hBeaGm-YKr?|OIg zw^=j%(fbdBnIS^VYX3dD^+;I{?Cy@53tOlgtOE2YJso{p&_JfX_(zsVKP@oudLw@v zZFDWYq341z4r}!ARO(2eKjxX)CEQsxovtcS^GIJ~&L0UCn;c7mf$R-|Pbbtj@R!GY z!SlnKv!B<;yU1r;<$jIbIo#05Z*h!lV_E_Pjq7THOELJ8mIDv1~xRN z!||P|EiAhtog!Zy6|GwF6;vpEREVUY>hTlT+eVuMa7J|csgUnHg7;PhW)**g5`;_f z!dLxQ0cgg5DFE6pI5-W>+hM8bOF_(9U{!fn=_$YPG(?WBA1&bJfbGY1R#`OD&-!f` zJ?C|~^y~OQ0nk&hhVmkB}0RD+~^UYV!8 zazg}O^SopDf~R!Q^L-Vz#sh13^#Y@M55D*p+~K-NvJGo6uXDUQM0Ms;n z`?#`^fkLJ5V)mPpQAp?7yqzF6!`= z&%VnI|1Tc}W<5fZ3A;3?E z2|lEK4W%ODGo@(jeye}e)J^5W8GIrNPHa)EJj**~0@`_Q!l=?kJ!PoLRV8oIN-jdT z2W$bLpBZMl*Wy(UU^ftk=URT8$?m5 ztjV1avNA402$qxD2p!0O>A)>etLLlgU&DPvwXv&aGXhSXS*3rSX=}|0*pUa(I80Ky zki8hIfU5xWfQ8kIT+v6q^9Gim_=KKz1eCk?00X*HQDzkaJ-y-#w75TSy89b5qF+nQ zke}UB_(icN-V=7Tx~V&}EHFgI!K+A~F%>ls2)2?ZbgMf+=BP5hA~M5{5}1V?LrB9A zod$806$P0+{O^CNDc77Yth^}g*t;ip7oGdZK|uK+8PlZSy2!sGjcb~sFfR^>tpie6 z{*QPM;#4J*VIB4XW`q@hQRT&Ozyt($_sN2YtEH_J)hvqL@`9YlhF}?A`#yFaoT^@Y2ZmHhtPcAJjr)#oHS5^ zV}wos*dUq>eBRNT_{*y-;XoEaA2ZZZ)ad4l(JH%!;Qo6lZL!ZeM*c9~1Dhu{ZC|QP z7_O)ul$?wx6hCVi0B5rK=8RP+;N6;5;tjn7B9OeBa>Lifn-OmoGL^$?`VNE4v*!;J zhL@G6BTRqrADnHF`sUT|@`6NHyNeB?>@=N>CRva zhKf@?ir1b1PgVC+sNzPDg1gMa<~ss4D zltA%h=0$5zmI*VswlkYy25C%p#+n`)If~JB~*i+8_zQp2?sJPWAzQ|Gu z4#Z4Skxv8;rJB2^s`35ICgF|G?+ft~LgGAPkD4=2V&7{rF#Q6^80e~Xcv(bj1h8$L z7}~;s#{lt2>ixB3Urj5mctp8>1FlGD0VIDx<7_2%{kODNEx$pWGxObx5953SR8JsP z+*g45twcdsDPflQ`va$NJ}x1yf*GUWmN#~#;x}8jpZp){S<8#j_K}9QWfI}vHbcMv zCZq=Wy^W*H}uJ? zJ`m!)E8q(X<$I{t`^e~5Pt!G-k1M*!{{0 zJ=0R&SiEe#U{;&==CI>rpgX-Q)d&dNwI9Q8k!rOk;4y&@q%bMp&wQ@a*{nU976%~t z+-TT3 z+Jy>wVG+X(n*m+md>O5dWri8>rfJ-)iuk0*ue`yykn2Vep<0N#7ha4X_SvRYbmsCi zj;-Sk5tYAO9)?p&lfj+MmTmx^8@xt7J+)e>nMLsl5DZxTya8Uo25II;B)OQng6w`8B&aK%M0in(t=!iX;JVo*IO~X>bfS)KN&ZU@fztb=Iv-TtF9 z1X1C4jyfA*0rYWBMpCQ_`EswT>C#2h#D_l?h;G^eT5ez1JegK6dE9n`ka5MrDfftY92iv(Q67o5O0^M zf?rg)!U{3~RKj}-4~;&}ylo=I!PxlaQpCSMN1}!4lGh?Ci(y+pvwgEQfMD`$le$qC zop7=z1NqnPEj7&(?@d59r9I@UpSO}hvEi6lcVpL4Q)(@xS1U>nrMUo}0{)Cg;7bT@ zh|LC|qh^1_-T0wRG<=gv2tGwEOerlRUg1T|| z&D-zOa>kvMN&($SE7g3-%!Y=x#Yekl{#6Bpv4691F=13Mn{92$lNbe>r|kEft0sO3 z`Uy~Hedb1N1J(gN!~&lpnZwGHl=;tP7?DqnK5*G@cy^Y*kZ(?K14issbf%xrx6C%R z@}P%gQ&nt#KfIceo2p6_*coVP)FR7kqH(1?s(%(X8c^9qPwN(|2_smcY!;}?>y4p= zoo(3VF%MbLyj#$DN3toCyPax5NLHC3eEuziITW{_fpyndYJR^^)vKA!2L@J0VgNM@ zK$Ez|LyETHm1b@D-&08Pgw&q_;jIOr;%%vK!_tAzOzbJ8)K4N&$^W>h-uXCUfcq?=I z)#X@(4wntC(c~FpQYgC*zGEoc%*n(hTu|VD+NRas>!@w(LU^@JD{=E_`1S%WtSEE;N5&USq@}5el^8dtJAcwTc4vngV*M48rNyC-- zkI+RHuFiU7Jh--N+<@2pB1x^jiCXQQ^T9r*v#rhK2WHb9wv%cZ&L1fZf+GZ~NlsdS zr9h*UyY&46an9og2-f0gru16tasj&qR!*RTJp_2>$#Gji8r55g$%*8~D+x|-VxFxk zv%hSck{oc%b44zW#28715`27l4hPYBVDKaXc-4C0S_T2}e7eBX$HShAxE+tv=NHlSsiqo*a`LFR{ zc0qe97WU^AOjiK+MgVwTt@0FqtZViK4jTh~ylia2wcCN%SK`Z;P%=AupudZXKezYu z?!3-{4*`95_R0gXZp5+`8csL2&R5Pd-dK{0S*Uf|dfSA7VHrR})~(*LH@Ha zrxa0*B1-xgFwrNJ)TyH|!{S1I@(RT_ECLjbjQFOMad_xr~Kww;NO-SQh}`H^shVs1RM?i_7N_<*#tuEB_pO~= z&y#Gt@5mJU>CoTVB7PI&e~wwg5im6!bUg_(E@SNV|`x31|CQ@as??O>rVc`>SX8#kgO86tZEaVLr3SK>{5x zp&cI*-3SfWD;Qu2<#KzB6|HMI#Lh?4ZVja#Ay>66`%NmGH<|MNYk3{A{}=e+dIW_Z zEG?&Kp?*gz!oBGNTFc-@Dou98@zGs$tEnP)f-vIM>tuLhJ?8i4)!pZ0!h+RLPNqwX zf!Qx(NF2^y3Sn)3^BhcF>;_*GNoD%eACBSgDS!^D*v)lALV|#J2FKYCj3l`6j2l~F zTSiTj2!HwF=giyVO@&bko2Q{G+wEa}CM=;!GXaRF++!8%Eq^sxJ2SRwL>V&H>-E82-+f#e8p3*EfCk^lDIR-q-Y#}4K%UAV#H!Y+*|S_h?jOM zmw?KwXSD+GIS^v~ke!08RQMb=LCH&IB=0a-e_%1wFU-PyTWkg28H@Ve;5>Va&rt74{}<{Gz#6LQ5jJ9r(~j zEVtpUKMSRbW}MRunv&6cI1*HqLxF`QXOS8R6t)9@eBL7`8G9R8jdqxw@dk|UdtNCh zEMezYQ|ZNxfZHDEr4Y>N|0WW~{l7fb&>7obp`W3#L19nYDSsT`8qai$XN%6clV-=? z#5UEqMXNBi_dSv;=ACsRZ3CKRkN3AEjd49BUbl57=|`oap*ima(;E;B6gKO+r+Gap~e# zeGa%)t{sP2r)QoQM%npAr^{e5O zFDPXj!xYi@*0Y;ND`x(WF#lZ88mKUgO22=rYV?$e)y2zKwRd=HKy?a8O?QD*9TmOy z=95U~NvJ`Jg%Ud?Td-%x9(EW0`@1=RT^o+_dVxPtkP1ftqH(w;O+>On!aLY#<{g{>BzLHnV;vUf+hb8wnfRmWk^9Q6gEi<5Hpm2{Q2nI zM<|4jN;=t{`mP7H#kMQxS;S{BY)o5|S9)J<=L~S>Pv{OZVUY(GvA}IX*`TX+-7qYR za@Z-dZEj`P*O^~4+3(24_}zV~9`~+;@ScA`peKa1ZF%yx)h~uFNIfO**&{JghVwkv zEsR|Xfu`IoL}qwtQTohDup>2pHfWdt)gXUkUeSqk!ie;f=okK{d9EUHy$$ntmRU~T+ARDKnX$=|?`i$?t$GX!lTc^*boK%~ z({}he;!SI}_3|8gD_KXVTQ1Kq@1);1xWbyas60^qq@@#%2xP=5nh;nT z%sHS}gCRR-g;uL{1G4~h0O$va>~zK=g^IYwC8Dgy+=?>1{=eH6c*jlT{t630C+<6a z4&=u&B`HO`-Rjq%ya24T-CeG~#KC7-OA;2sGXu|{hzC^K{Y=n*+UC$QYcO$3uiHP# z5kn*yxg}zof+KzZ$4TIYNc#lDDESWy!lxf%kvR{11HE9-u_DeVB}N3uMFB2QPZqz^ z*{BsHs4{utQcn{`%c(`|Xwgw2mL+1UE~+T& zrmBUCV!Hgewea14)g`DJmKVx-+Z4`$5I#K77Bfhf9UpP+}8qP}S5t2$LCm)Kg!5axDw zLu9gMT%=wTfWp_?*9UFdYt&zVj*-wqIa#9PBjVcb=06{+*<+z8 zLRZ)vlea41iVZn}h6E>3K_|tLO_-^zoL+d-lD|+>c#qEpjp{tOH=YWM2gLwJAq>FS znF$m5gO9#+%+&lBTjGZC@a-KXn~GQI(yxHM>K$+cU=q5Z{L?xEi{IH$GVp#@bOkj^ zEzKf-&oxCb)uyYcg4X~G&q`$#kzg_j49LrbU>zS)O3X^)6Gr)YOH{129(>B@%s`-O zOTCMhq`v`Gekn*bn%$EUaZh5z<^sy(dYOM7V~P~?@K2_pP^Khr5izTQOUj754Ew^| zKMMH{tLNm48Ik!@>D!`?Bi~TH&*H`k4#jYP|A19JifsjHyvs*y{=MGy$c~}uWx9=G z!$M{-3>HX+A`l&8S(cwjQVr|KAtLpC=F*F&X1HWC-uI3)nfNubviHQ0 z`vO+Vtl2s)KFV2&?Hm$(%mO~uc-x=HF6jl-YRq-Fy1g3W3n=ci%JPT&nYfw@_8Moi z;)!RS?o9*DORy#b9u;xC9SlHfjrQ1o*gIBgYsbA~uW6s^2n7QU^obNH@ZU#vt+_(> z!6eIh?KoTTT9!RQ{(K`LPICvSM@4+i-ETmMrQ+!_wYrHPjXM??{vJ4`D6$CjbMi+r z61Pl#N>Zrl8=8{b)rHN%0EyZHfHjILTn5ev?R&v0n#xu6P&RzVD7>h+8z6FjpGSuA zDoYlVK!YJX#T+Wcc(`nF`Z!9{bvx3Z@}kbVmxBb+>~W3jkGi34BoiQJRG*d0+u+BM z#WnQ~X)i`?iY6jKQ}*{DvZ*U#;QT=>6zi~sNWdc2$=WR`@LA!g6N!-^S{c9`C~D}3 zmz*yHq%>n(3@>Qpsq zlWGYg@0W#HHqg&~Qgb540XvFBUqjQt2DsHorAZ*XnGW0UOIQx6dqmp6qAF$}ipwo4 zc$saN1F*KLYSpq44cXL>!?b~&nFxi-? zoo(B;-K3q}&bE!owl&pcTazc-ZfbI0^E~g5@B8m}bky$jy4SVN>n<`PMHM zP%s9)*S=>kGIGIxlK~`vwm`@Cpb5ap9Uun;8LGP51DODnhJP7~c1|EVBSWY6FwoY_ z!WKyNULs;=@9t<}W)Aw(gN2UnPp3cC!t?-XLt`sDS0^hAfT67kK$>2T9w2Y$`tGy< zP}-{fY;SMp_&-=gR8-X@XaS-^ z@~UD0pgJu;LQO^W&remL?K^%mT7bOjd;HIw_ryQta$>4Ns#=O-ObmaX0l)-s0XjNa z{2BXS*vQ|J0saN;z0}mv&gQQH07`QZ$ex>l!PV83-pttvL~rM4MsIKZ7d};U3nzf9 zoud`t{nHVDXbt>}7-w6PcRE4lz`q;(ITe7cg)z|93HYZ--0tt7%{!IvMelylKY_gy z0s7O^`tNjr6A<_xW6TYm{;HK#RFnnS7+TnZfVPIV#_x$BLy)r*z~C?6`!~>p;%|UJ zfQYlBtx{sa{9X? z5MXLy4g7=N>Cc&2*#6~{6Oxw_7gJHClYJMSEuEa*J3F@YAUDuo*?;;8iOO;VI2qXi zOkAu0#&?m5*_w#h+1R|Jc7p#ypQyz5;df!tMJ6mgafCkB}~#KHDov3FS-TiF7goB*t>e}#bWMEn=xclQ6_1u&>62uW&x zNYngp+5D9!W@~I`Vqt3rU}j?n7&lxl{%LW($5j7mad7|`4F74p<7O~^7yiFIOpHtb z2H?M$EC2?xe>1rN3^xBVnHT{Kw*O{-zSr9QoB7_|@t@}VqcAuDU4Z|}XM0ZvnL7gi zHID7QAISCJTfD<{{+G%8Ug7>P^qc?&51`}U>Ho>Q;-9xGGlnZx@(YK{NCAOG6Mcg6g}{&P72fIv5(G5pU3J7b<8%dbr#WjqLuj}8Fs-}LK zC<*Qu`pEgp*X=j3aZu+C((#9IesZmQe6I@Rz1Lz(H>h7_m`?y+S{!XASa0u*Rf6*!Ogy zA5`j_qX}d^{=h_jMb`@Nr4gbr?i@j1HWXFOfyTfZ!iC&o=5WK)TSN+fWVuJoL6Tw* zO)BMKfXc>jA$S$h3LK)2XT}~*vXwg_E?Z$(h*bIB2;qVa+B`r%kyaQP2rVER!Ah)Z zH`)MFeb#U82!xaBW7~kG%!*^cM59$CM>?mG*c7SCohKcVcQ8s5QlWr#P6^7#OW4js z8Gcly0Is5mF3ZonK~^Atxv^h`f_qSZ%MdYS2hh*V-$Z=CRWlJ#%21z&C2R;L?}sC7 zAs0TO?!}H5D8ePc2#})qnww55skNE_yHxjm`ppP|cQuE_~RbS^IBl%8hdIy3} zNt=0*y^eprD9O+s|2$(sOfF_MM_B+ld#RU_OY`lJ$+>-j+im_^xrdfkAXx+E-9^lN zZ=3+k*K3{g6pG_!D*l8dBk`ycPQ{(eOIn-AF{r4L?wF@#J8F?l4yR@7^Y5eR8d797 z0Ql==yrFTzuphsFx1T(Cm^`P=>d-B#f_WM{8sD_c!jq160S*kG(8G=_x`(Qmm73QQ z;l@ePz|XLShsM=f1H|N{15jVjReviUY97ZaYJE#@!4z0`BC2LYg?uBf>#I3t4XFoT z*b>Hp^1t>Ezbeu@TcL?cqm-F*#Bj!MHO5KG`Pt>$2uxpp7ygY^r7Vywbr}_Dr&B0! zI*z-L7(em*o1E2299ghg;q3X0#*|4j@td@}KsgKxrL)umt)Y7=goH*Y7M z<`f#q*lq4&y1y676Ge!R_qJu#{~j^IJmwTa9rX*vNUb*4fwiZ#e};~ zl;O%*qh|aDdM4#;WlcE^aDH4nxqA-$#X_yu{Du=JqmfZ#7^2M{)U<>CV=B<(v#}cM zspZCbI6zPdX~V(I1pZr6g@&8{w9yacH5a-MW=t#k^*!gJ9$4_(Q$TGhp{v~phlXhp zcb`>%u)B@;kz6XxWANKAVDmn*;uK?8&Q-Aq^wv>L7BKP>T>K4=D%4Cr0P!`c1%}do zK{`W@eq18w8?s~f&SbuexHBA-0+#!EG@ot{d36RUY>V;A#C6)Z)ys!}$Q!lr--XK} zc`r(~+;fr1l%Z#_DnX7x65GiNd)Hj9+5Yx__MmgL1gj^5>fQ!KYGXk){sXTHdG7~86522eVQQ(1AeG~P zc7RDh1hML^dPHO_PU{+AlI6$7NP4NST$7`d!$~HTW27 zv)=GLo+lr=ar%}h_{tK$=S?NMcB8n3VS7c0Su$;RExYLe!|KQf3Et zFic{odU6yMY+`qV)-mEs4csn?3xR#*FZebh2nSxmmF(q(RN7meq16wytkV~|%3k7; z&hTCzxq{afHZjAAoLvZYw-jag7AujvTy$WKexS!2&EAJHV*MB4* zS8?jJ=sBk{V0+Owf0-{zZTotliL_-#C zCr<$gxTRm371ME@&4H<(tx>YFWX1Yu7`czF;_MBeP8(cgOc*Z*`r~b)P4ztHmZB58 zhbvGsRI%;Q{Uc@wG48hb_rL=6+~;2@g0YTMx!8**pTpdFpP$Q?celNN(k{0f;`q7wkKa%e&Fh< zsWJ*48W%Tu8bPOqYt4FG#i0tgb-NK3mrea632LrY3BCius`o?Ix62dg1xNJweONDz z!$Tc+tdc9ciz0r1l@tNCKy{}R$2z2s(Z}az&BIK54w9gA)8yU{hJ+GwMe-BPDvJV$( z)&i_zMpsn%4#)KJmZs+QTj&vjbHmBA*UVXd?QG#zz=*SPh^*RaUb8(2H+m5S$;^F-2m3=g*C)$z9QSkcjy_8n+lj zm9=JCCN#;YWvFTcefz|>6$Dv)^cHGXF!-?Xjka=|wKSiq9`_3sN2W~J0OBQ~7Pj$~ z-PYn38~TZ@NF=4NUu^lIe%0eWHl3Bry2jB> z?&(XvTBJwf%;lH5oOK3UThrF zOtPLAv>lf~>oz!R5%kaA_;~s_udYUTP*OBZj}~ozUNy>(Eb@83B@$Z3H4A>3Y#brY zR=6@XQLsQL`71DKM(snE@F^M7>lwf?S2W;vgRvh{sB`D@}S z_2$coavPiC7~D+V-9uHvM0G`#u0nz`G44<&i*I!DCci71F-dN5iywrsR~{gt{M33U zo?Bag&{9lSdb2&i`?y6=e_`J-s`i_zN%S6?%_}q{qfl%aqZ43VrT1fJ9=HpfmNqv}_~1Mdv9jxH*;)2--jqX76HdT? zRlPRuW`305!%zlXgu@(ArVe)dFqG=gq(!uSpD)Ho?*zZ&H6 z!>@EBdwrk)*EYl2uCQ4!Hu!e%L&hD2x--C=I$y#9?c5cG<9;6BkLg>hLLq|EPh?{# zrj*uvjk7gqZH{L?Z97Uc?;XJ^?gYMnD9`auK86%pG7K}qPH`{M;T}>sZlqAL^kz8u z@oB&{Q&f%xQQ~4JT`lQDe&7}fMZVo*PN*V)1Si}3^0~p$EEb_C)A8wt7)hQ#8=~!X zm%BwLM8e$DiK3w53zA}ueR&JhZC`fRlUoF=76r=(Cx`Pk`W$}ga*wi88Vpf?*WE^O zAXeBbeoTw+O}4jyv_dGZUb;zOS^K?to$Hk@MlS0Cf_9-fsEGjn@`IIpL9`(1C=eyH zeb-ZRK0F|U(3f%8lmD&VWB>3<=PUcrxf#qdP4VjBnvf;_wwtahodj;+75kKA1;7$I z)>5chdNc&DykiT;eWz+lb|1rk_xIuBW_slXlNR%0Ja!TKT?ikAj$gja)-PWC9j@9( zF@HB|QvBQnSbrcj$z2qSa)rqPl^=OO6u+iL$JS8w4P!_ufopTa zG+^63-Dec#im;lHhruM3&{WaeCW_e%$Ea~Q0VgBq$ZAzDAe5ewyHN9gA%I8H;e60R zNPJtyV@z>DT5WxjOjF9%{5P89Xh;YQ;jb^h!rOCywHD6*1ghKW^!5Kn9DqDg3^p6O zk)E8_R?+`R%aEhv4fnHnz2z3-tv;ly06b$+-+%nDK5E{oA`E77xb*iV-VZ6S?X5Pw z-7|g?gpy_d-=Z){hB#1v?ClA5unRdcJpi78`s+i%&=&^6`9`ZRm9CR)QyR=Y5eh9< zv=Ct?uS)FXfsAM{?HZ^xE+=ZSU1}tY2~fN zo342LvHCQBOy$Uui@vzNVtZ_WDjw$@;$24Ka&vek*TOu(a&VFW-_0%rp5+tZTXI)y zA3ETvhFcZ}<)kFhX*%&nZXnt;^#d8teGsK;*8&Yyg%QM_Fum4ZLM)t{wvf$uEo@4+ z{!LP?LOX!mRDwi*qRW#v97jgRvKV*4piYo}C-I6THm{N$yUKMq?KNaiCUONMuF~Z# zXmfQaKwG?N5vdmYX`RcSMkdmrSH_Kl5c#ver(AP#SNkxs{L{|jj;n>_{agoe>0Xds z8CfP-`HiMVT?AD0E`(*Om2J$gq#qt4ab}9aajn9=dWd#^QgeFhr3R$b((>nn$*M5F z(|Ac->pAA#&_hr4i5H<4BPVPx{v{Jg~03 zU43*Yc>|~=zJ17XrZ|1dcHdBVy2_b;Mb#EToRO$uo*=Mm*i6}lek$Br@9g4_n?3cK zNb)AMemx|Akt0sr02c$5_lv~&ocCUzhMrY7hiEYXf#`O7V9;(&B+u+=2be z3!B$+&kD_AK?;44V>~C?r5Mthj)QAQOcv>HA7xvUIMJ!O6qZGdJJas;4L{?d7U+J? zs?LZV!I(Dl!{!L(HqsJ&%<0T#&7MY#TD}A`8P^^W*DS?}998#-ZmieV!Vb$sp3ch4 zOMcvcSv@#IePUG@=ok|k0ZytZ=M5}^Juc{r-w+-T;2w)k`h@6&O2UMsZl?!3nbZ|} z?N)Nc3f&!$jk}oOD0sJUm&AylRjPSMXyXwowTSO(>Lj1HA0(M6s0isKYUzg_Fdd%n zzeb3QBpnCMtPinAB4tlv8-vZ)vyiVaWnjX8HKq5elVd*=ArUJm<{n+?41}^ZGcZm$ zaSm0R6LT&>2?hIWqS~(V);Ps}@vf6k5e+ZQr?>;75c^8Bc`)DE)4iiBvrYPcyu7UW z?$N%c61@5L$lKR@qK} zzN4RH*?tNTA;zPRs2hv6IgO?b)7*=mC;j1+e~^*7l5Hm0n^C`b)*69QVw?%tROB+& zEx6w#d({+F@U4n^LLT&$)eVJc>>ePSxOLchf|2ZxbhRu}#44QL_-G>0#_rBWGeoQDc!LNkd9~ zx%vfbSP3cWcJHy#g5waXqYQAf)E8g$vO$7#HxGUIs7y#$=FNew`_@jsa-Gf9d5Srj zwdMF(-nzpT!9a@P%M$Yo6};_#NFIMYub>QE?qH0vP+Jz4@gWPxLctjD6EbO;QK$`)E+E{ZJXQ2 zb&qKK0G8T54V2x`Eu2M{UFX)%FZaFwFDo{On7JS$muY~xWKHDJC`eI%`AvQ>XPwOz zVYC=5@N;o`+_ZGZuFvZbft1r7RYSrgt20VA5$1t?ScIztZ_w2jnh9d5Md*u!vQ&4^ zK1=D{E8D(OlO;~0)rV%h*oI;uJiEtXU7}KW^J*m+sNYnt4V73;J0Eapb3SP}OPdiN zbIXrS2R-Xu)thrJ)f>%!97-m!<^8~#90a;joEKH^%k?5zl7%%*64&XPj zsH}XB&(3M+o7oS4E=hfKy-JTV&me9Xp`Q=Hs57Lb3Xu9P+~@XjKK%ij(x=RQdQ3c* zA-m_GCmhlmf9`HRt9U8SBnW?`x!#zfixw5OUUTbeSto>b@%f|9mu$J`M3ieVv4y8X zS5p@qCQy3K+$xjAsqqeWGH8GNoUrcBl?erUkUfg}WZQ;+N#i_Jc5?2lBj1Yi)1|=% zEIDz9JilUHI5FR%79TsPy6M3f4|yYDdn(MY>_?rbpIO1fMRK|FTy(D6wSu`2&T280 z8Kdr?qZ-am;LO9VrXF71(Qi*=Y3*gpO6l8r+z(BMGBwN$gUap1q*0JC==*?32$28< z3Mu*L!a$0DzG{)go}2RnV_>ltkBR@3FT4vuj&5fDCP=ojG`acT^{mz>AHw%ijh!mm>UXtJ8>o zO|Rw)TG@2P^APGCRDHG!_yyaOode^?))5{CXKe;%xVeXoCyQ$;n;b_GsTIkN^(!)^ zNJ%I}!LbMV(k;E;mp^?S3h&@dhBGEdgyz~_mx3FuKAVH@q%mDCcM;1Ahh(iEXoBC~ zxTD~IZ|*qY3=CXl@A{*xy4XRkjMHC!zK~z!j$nX%)D5lSn(-In+KG}GJ=&UJ0!^*u zewA~l)31yB=oD-&s9V7&TTuCfUQ>gPv>t)j>iWTTXh+s0gAjggsok0Kv)jX(K1~c`{HNbFpV9NN zJ`Z6nNoVcxOB6wCR*^YF!j@jLM*TR0A*)idh-=aLf|jw^p72$H4nA>aUs+eI@{p*a zUKv+lsn_K2yS((;?>WYW9?uh(JX7MQ3g68wnV43;Yv(M21NXQuXwVE{&w19F#G0vp zDAyJl;Z557LUzl*$<(a>#kJMzYMkLhPQ5;>LiH$;}0B#?7fFqV@lj0bU-kiwfhJx5wun=&D2Io zef5d*jId~=vxx~7!VoO6v-+>lY2J%}Papoa%?)DKks!S-E zh3;VqQ(u|@9#o}WmDQ1tJY&-GsGr9bMSq63SC55rV@iEJ((7TDsepTf5oAINDTp!v zqlgYpsvdo`8cQY{^f*MzJU`+?66KkIkyTt!2W|qFS8g$u;Syzka=-e6fvrV<=`_5F z$PsW3%8N!0>oJ<>nb*07vQ_g)PzEBlu@GcX(^^^ZbQHRfHiSCFO zzbby^uU^%2fFU*@r}6wXToZh?R?iOAk;7K#Tv9@8{~2x7c~GQ-U6ik9>qix=C%p)C z`OM(5U|K4w%maP8TxiNuR$J+R#8oz;d?`q&Et)&_=c5lMaRITv_5OMy-%G0!Uob0m zXqD7mQTr)cT1IOvg!^YN0y5v@kcQ^B8H<=Epg*3_K?Pt411T1X!)z%GQezL?L1K@C zLABYWbbWLeQE>6QRP$HTc>4ICX2|_1CQYUzRkd>CWLip_dYcGqg)ZEGHP;qI4 zjX;3wJ%=)Xm1djKWJbF6I**24aHr7^bIuQ?A~r0m2`(RvB>aiP@}!%v>yXK~C6yxsQ2ev?R7@mx3$^;m{z zK7P`IL6F1()Ge%*<}{5T$C{L=S)d&RxpX6y}7ogam2d+b3$5PlzS zZb&0lRnKgOsKyoTmF4g^bkIqJMlX;d=ze5muty>&{N%2LeWYA}vOzE3WS@L&baBL^ z=LYr;)DD$Ss>_UoRp1`MKVPe@dHIp*Wk;ju%yEQI{)#0imY_+K{4mWxnd*-w_{HzK zrD3x7ySaO%S;8TjuqDfcTd648M;((`ocOWX?pxJz8m(WdJ988%bgb5-bx3d?C#B3M zY5Ekiw&zYEB_X?i0jJt)-lq{ba-qB6r(<^;v+I|7D#&C|>~zdan*msK=m|Cgo#>WO z?FysDbrhexgB`RbI~^k`B$sBrNg@*UG=w_?iR5%ZPjl4A0rU6|rt#!g+SM&1nyv|< zJ^_>QN*C19uL=c3XvwlVAr~Gy(^&cW25RTSOw5ij;E)}E2zUs+MkGp{r^Rb#U<-K= zkkib@b-j_~$1BPFGYKWU{BxXjs&Ex?fxO9{;SerrlEd5d@2|==62I}3Z5G86XZU(0y36bue z(3#lpJ6I4}eYC>`BV{1m!1?{VBwMDRU7_2Q!nCKxtzf_8yBbCic4P!Z#^|l1f+(%r zc%?XhlDg0o>7kyLKgb(TLtjHmc2Y8Jsep?ueJt^Z+=X5vx=O%okF{dAP71C(|I8V! zE7ptd=Ah?n>gTtMUe@P&aQx^b7f;xL!-c6Ia+&>@;}XPz$CXmu4@ZknjI1gZj!N6X z(43Z9_OZLn`@ii>lPuvQSi zXz1@y6recfwPgw)(nF3@G-aSDcg#+cDlJCnlgLxP!4DFzFWX})%-IxJ9d~Cd%j5_T8V=BLjD@->oU5v9J$DlWI+)B5SdLwWFdPZZf&V6d%P{3A_Ljdhiei^7J>;GmW`zV|VkOhT za~frI&bO2J^v?;6wl}1l<2}hdZU;Yq=a}-oIb*g;G1`UJGm z6D2Bq&{(`yn_puW}fX zUtEZ;vi_8wmB8ie0?z?;%Ue2&PkPD1pNeXFf4dyxDJr=t(1!0S%eI`uxUPMF3{!kc z3k;T!^zCg55`pFTnC7pxZ#(xy*SH?cNj$g?2Dhu!-8r3=jfH_$A1zlXYfy3Pj28!& zE>}S^tVU-S7Ky$`n+R9_sJ@^gD7HuZUARUqE77tG=r>4JqD38-t`PpTy>tE?WkiBi zj;03A;>`z{{!1?=t!)XkCQ9jl>AH|ATnA+iWy6FqFEh)T&AIH7sX@jsEwft1450M| z^}&maFFD#Q3Ox5aA0yO_E~^rh&3R!3C}HSg8`0eDow0_0&Hhtx0-vZE5ySvf5);B{Lsc?<(OP<=BZ)qqMVYO*wV(aH zG3T_C>_y~!dW^-Z6-7K=t1nps6_$f4w+D8by8{1yoan$iUurRZxdV( zG-FO8k%+4+n-yP^8d9*ZbaEUWRm%Dam4j*fGPW2QPMQWvwiV-(i3qO>lNOyX5M3~a zjoxf+HtONGT0|;`)&nb=p~;JWBfSQ}X;t6s2#0psVviz`Yp>Ax3H4#f>f-wxOVlka zR911Jf7I&8`0iDIdQFtZC+RFov@a@CriK|p4-!(FG`}L$Cesf7SX2~`)wzbmZ{szQ(Mn3SUBSZr!9t0;wL*K8<0AH-Nl|d4(W6sbPo7Y{#>&4IiTjAuLR0ab?P$>a}vN+ zBwdveOA$AJ7WJ|v-n;1gliap!zod4RO^4ys*jRnS=5*wEPL52mP4%-@cyCcKT$^kS&^c_a+89&#&`H|CH^aE?-oe)}6F$MwgW*t9wsH}x^B#<3i z;U_i_8!kAoaogKuG7=QQhSp|nfkIWGxh4a!sk%Tgxk0f7H6wNynHDr>y9>ioTWpkE zIoojcM(e={zV#O5oj*wgyFWaTWy`GsQeX6cQfAQ5N5sku-OHl9kv(`y;`O()y0)s> z*P6d$e0YE~+w#j3vj1Ia?8}JxfQ4DZ56eyUJ@TO)C#Fe7)xSiemrP%ixttcA^Setw zw9OO6rAh*7;y_k?cp*+0qpL%lj|7)^_N%&c_p2rDYd85<#E?K)>eDm38I^nD`e#i)lYcGV+b6_Ow>W-Vs@to)+G_&-S5tH9jAVYd$ets`PN= z2qzXP4mOT+tPf8pQzyY`McDE|y;AM!3KwqAd_`?iyXct~8EQ*&Qw=C`y=Oq=%uo4c zf_CXP69sJlTdv*^sF;Hp6J~55U`bNel$o>>hkNggf8dh#H|>no5P7_{wt+c6S}i@0TpG5 zu0!DTsr30K>(Ow5y4p>DgG?QvQL5Qwqp4%@>x2q*t6cT(@`IFGHRQ$iiLStZLwdp) z+@Kk?sOTmHIc*7SxP_g|!j;#Hr$= zoZWY>?uChp%;)+mktDYr?dP6`d9NZmiP7#NL=&sZm~JFMr#KI+yi69Fb!W*Pmea>34{5Ej~tOKh`UBKQ}T< zvHb#_jTynOIaK@#(te05Bb2F7eYTL_8ed5W_zsoz(2j;ulP8HiZR3?pgSKyCYE-Or zE)+cAs19>A#AD9HqB4Ge;hJFtmIvhtF!5?<5T-}H%Y~BVnS@favb0l{UFIiF(Pt>C za^sI!p6;h6kLPQplAY1#X=5njOC@9b#^mv-eXGi%n%@;d0p{newWr@{nzCfr;s3`fwWdN&e(le9J+`xa`lKinC52wd|)W@)g zT$pgMU=Te^^JpQ9Q{dvyCs36@M>lju=_@(>N2 z0eC-$z`VhAfA*9DDiO&SdOU6R7UwwE0P8-oy6xwn_@QUjuc6ys#7bYt&evJQ9Kovu z%rFBs9>?`UNk+Y?t-!|fr3dumP9=9Md-RdU!sW1i+pdW8iZLpUy%H%SN z*oynabE7+fb=|7nnjTMVC?5x|SXKNb{ZtI7On-5UKsu}L%C5pT*g&DKXv0LM)6Zr- z{D|cLsnaat6;!^$^TBwr!DBtNo15;(q}=4}pfIoQjYgBFgBgK~KDSHuz6Y^p%BZL2 zgt{+3Q?UA~Fj&^Ze}s;0T7?m7=mle>D97Vxh3!bh;dQ855fc{N-N=C;&Osc01fka0 zpQG@@PuldTS>-u?u)G-q3Sxmpg?(Gh{`ZBO>o2X~Yik$aWIN(|VmY1{X{h)WZD%b! zieq%PqL4NP>(aI>{Z3cZ%1=0XPjfV?f~d^=&>0g5G8dpxe@gPhfVnqAkv1)s>M&~6 zkA9ZTvVQ$>wK52~Wfr>x0#J`e*)*n7rg*iq;{)kIYkTu=X?iDWA9Ga}NWDD>HGDzc zj`wo?o~kL`JU45P_&0R1GI0Ho6f7T8+k{(x;!By_1u{^H*S=vx)WJG4Zyx#IyEi8Z zPIOuKDBwo7e|kjb+)}7*A3O{b9`-+6U03rY8;opxIgl#y7+rOZnQ@b0CBc;O?dB8t zLtwtiCXE0X7qv9F?K{ zE9*!?b(luF!lvK=kUKW~-jgprIQ$BzcVBnp>M zs#a8AF5Ynq9f(xU7u}0&ZI#?T>QruPjbBp)3Dzilo&60$d~3FwxVFdt8YNK-5trPD zf7K*8!JbblrUAKA=I2scFkSg;hMvyHZwp@*?PXHUhFQ+|$H25xR`sG$c6N&(fJ6m2 zvlcr~hF}Gry93dICW#i|&lquVP#xi~jV-d>1$X?J+IkWk#pwX7;axrCi*+QhPeNr} zG&e=C(#0XESa70IbXa5-G6{saGO+cM`o?fBXX)HiVR6#~3)bdNEz^wmI}ee-={D zw2<6~Ghi+_4v7|C#MenY#~+LL?EHH0LC>=Qtuc&k3MmfCz=`R0UV+!_6@EzB@mMZ{njHY z^BGv^(uF?bOCVE@kOD~K#8igZe<;;aYQUf*Hgwkg<1KRQgfx+hMc+qNp3E}BD*~-$ zKXWKC_ zja_tR!9gBEQ44b&O;-hkIMWE%J2m=qPb0jI^$62^k}43e<<(XNJ=EChf3)TdgDagE z9oLYvcfJR_4}<*qap{;**FgpOCpI_EraPuhvJ)c5O47ysv)@9RCSI#|mR)Mwa)9Uk z91J98E|Y+%lfj#$8E?e>sW-P@%*Ba6nq^ZD!6w1&aXMS_a`aD>MOWy+YRmbuL#2+F zjwe_!9F`DGN+u^u`*H5>f2uKoj!e6=qKil~w~%yf^pV<1Gy0~q+*DjEBznN)3cO~L zc!lyqU;K9UAue~uz3^u~KZ{xFVZ zh^%$Y>7(2mGv1WiJ8iYWp%h);)h9WNwjxKw_PlxQ=o&0x*^gGXm-s~V<&M>9*tJ1R z-y)$>-kheg`D=YJ!>6bSl#_a~HkYb8`#t}Ul^JQD6GsNGlQH@PkB87WtGpL_ck~Dn z7NUo0B4U(2h4IT!f0%8vcT%(z@4zdrUzdg@0zy=wC`U2^p~vt^(4; zhh4wrNvS4&4Ioogr*1>VQlVb(xY%@#f<_bC0Uz4p4%363g7%qco$;4g9`tE(21Qnr zZ6%Y*2Y@~K7It9sX9?t1{1PlxbLgE-*u)dA$2b%8iBwTsQ@J2FvAdlo z&q8Y;ZE7!he;HrAQ|gO?J;X@Gss^koAglyUXHXO-FJ4+j0yii z=vFrz{-g8&?Pu){_ShylcBThcWhAtV^m3GvAETRsq=*1 zni@(MSI2FtxQar2CQ`$s z#G_!UsKkVADe7r*?4#`f;}HGc`^-#xgw{wUtprpruVO8XTi^hZn zZcgILMB2fo(f^w~VkhS2y&*z|8@ldpx4*w?F6R!&VJopT{CBNW$HnSd!euPU0?{2d ziw!dVZB}c1{d*S5=Srovk=GA$NS%jcM=xF5u9Fvu(GYD56*-MAQqll4`_bc^ zxfteo7_D|2`OjQj<4iB z)hazukb~XJK}*2ss=6A9*h1X0RJ^VsPquX~KSKpHD^bU$L%AdK?BkE%aGqcagsK_?+8#5=%yS5T`0|;1620!A3cWG2<1xJ z63&BgqV8MqPg*F=K8@(Qlp3)WG|Z)gg4~vfU^}GNn=vr(P#Rejii(_HZfbN?2==2+4zqglx&R z4@AoCYuAr{xJiBqeBA%~OSwfrKm_o`+Jo>j!ut2Iip7bo&bhM7$O!ZmUL54J5WV(a znk6vnn7E)bE)|q{g-FK%e{5Q1_ptSK^(@@s8{X3BDc$+c(rVV6c^m3qOD{f5Ve9Di zQDbN2s{CRn^=z0Tq3|7IzZ>~<$N-1y-Oyc}nIaTrZn~H~UOX1&O z-qg)`BM84Vi=nqNSb1|jy))b^!U03z%Bjzrjr+v2&U`bB;qkc<%Vf>!BVIxZR?6|cto5qpzqSjB^&mIRSGx7lRT!oRQnCh+1fHX zjOvNp9E>vw%F7Twe_!`lOUG`DAI*FTHlFNvJje(8uD8G~c$171l@bUmvKJpr&Y0vB zC%TP=BvDmyE{S8f&xN<#O;*T3dve}moM6hd zh5m}6&q^Y$#XLVI<@#x>Nk@PZ`aZgY4_{K$s#juTPyJ4VeK9T=S4YzI=LzVyFekVq7#n3Ae_~&%JPa0I1(GpmDrSGF$J?6$GW%1&@P>?vV!u!wzA+}SmVdlrE z8#HcZ8vXKmYSDSQFHS3#eY$)uof+^`a;eQpMBLk4|n$&(`G#rpBbgq&2 zRjXCFf04KI6=4qk#;lf4pTBE_!`>ah?rP&N8B3-YLq+U@C&L9tljL->N4|RWqrSMq zI`D-`Y2ODi-R?+Q2evE%dYNPCy4fyZ<1^hve=hS*riKD-qq^umNAnkIUH@j8DcJ|2E`*L2_UYN50XzWYg2^A5@@9ZUKe^v&F|t} zfA~d3STCW&DczHfG|g74t+_DqrO+O>4%;kd|gOj)=3Oh{_zLH31J#RD|Q)io=~h3KS`~N$%q%5 zAT+Pa2$y{P0B};kw#(Vx{4fF=m`ce`f2#K-_u`jE$bOR@OzFV=^oi95hOr`zvFrxu z!xoflvbtdmm88jOh|_2-!PHd$bxJ(3K5sG3UUSK=;;E-fguJb1uu#5Pb%ORT7fhaw zx~w7{0b@2{E1PdiU}-R4L{sXfT$|dhsxv=?8c$~eh&jaGBNg*Jl^j(b$n!g zOEuBOPLEPh{)WbC;8_ve_jk##gFwy%GLDNBL^**A`fEiR4xH=LvVy4reZOpQW~$C z|E@`Q()4>u|LEQ#+c4W@nUw22d~8jvbgS5;o&^yH<8}N0+O!9TI2Z;1z}Z-~E^pbc zW$UtC%eAMBmG_KDWr3T@jA) z!bLBKJ?27>^c|RRd9nk=i*Tk=f08LAwNJillzI#8`Qe^q?ohg=y#_z^mH5SDBwT%< z;h5sFA`;pi%M(qFJ>u1w{{^QgNaSo+2c;0j4s%B$0rQeFe@Y{J*irl%;_uWFD_n*s zw9Sr(@pRp|d}L&&ZhjrilTUY2w6z4lx%Qw8pMmtUY`5Daoil~fF+b_yrBAY<&5XX$ zuqv%+64v}oPq200WUeF@TKsiKvQWW>Q5JS=RQR2YwzAqBIRD!r5EpE; zzQ)1#MLN=eCWQy7C#scAfEEi}c{2FBGDEhp^g(Zhd}5CuoM5xE#FC4!d^zz+=)K%2 zXU^#Ge=>;&4VioHzfxAEig}tU`B&gZpS37gMW;4ZRX)O+R^kH z=!1{VYO04llO8Ww+tgMFqLH<MzTa=n=};(NfC3p^%4{W-*$qvIhplos2#!RLq-y6lT6QpiGp2sZg$#re;3KfYOw#ZE3s8Y(+Wa2JRD_fW6-PA zm0WN&Kr;5XAafBfnz4V2xiD*4ygmi*@Ikt&Y5>O9IP3mnc>1zUbk#&<%A+ia7_fCeJ%P$7#Hr6`vx#Cf9%(fZNys{(oM0f=sm z=q-ni+$bjl?}i$|WHq3$+C#c|62jooe`Dqv`#k}i>-Z9&zouCiWf*(orP&f)1^x}r zQNUh(x>(H;UCI)rB(HOlgMm@&jT`N}A8njqK7fqdlRGNvvQRc8iPQ+VV*Vc=U$xS2 z*yQ!Dld3Zi+W8AYfnPeZ^EO_Mp|s6L3Cz+(!zklv=8IDMe*r(7@c@ktt2oFkf0z3< zp4Y_pi)7m|bwDT$9$BHI&zR({iq(c}Qs-_r?dCe|9XULc4AAH-eJ@28$ zh2T2V>Hy7k+zoLnYiEl7izUTpfAFaO!?B7Z1i!?H!lUKrj_srilvuh!zNln(fwGBN zd^@{U?nvZKH}5?3XdD1$(>RkuM13Pg1XtY1-#M0{>LMUL_&5$4Z+#*D_IP?ehM^C*l(5C6zQKgYdllefr8gJEBx?XM2an61PI&X zk@;W zM}!1uW^_(x0Fr22HzTbmGG(l!1Xj@(y?iXZJCPW3>ue*n)_!8jf9uY!#bhs5vof&! z5&%V9P9L|WxmCF;T2al1p0YbDMhpjD?9^VTFAA8)Of58~l~>MpuoSaNV7=JW_DpxL z-`uflZbgQl#H^o|c1t)3TXktVB;!_~4xTGJqd?3~sF~<=Zc)OilRcAL7uiDH)%cR- z5n=n}v-(}DQwwpkf51tC1(t+2;zumn(L0BKTK*Jn@f}C2CDHUx@V(|vZpkoX0}}=J zvFsc{=N?t@jD`AEfI={0Zq5(GYjfF$gb&q7Ucr&<+}Wb+YMjpuEvzg?DCcLET?A6P zO+cQZ+xm(9>UpC7yvta*WBruJ{!;0E4n0bs~q9*9#L&lC!HV@S##km~F38En+x-`#Scz1t+$&dG;#fWNi@2i+qaQGh*(Fm#xMF>TQ_1fA=u575M z5CwWIWZa+ZGW6g}y!E{Hl1}tO{%4^9bW;~GW2bMPo)Pe?bhN{&w{XGVfKa^`MZ4*y@e2 zf4fFVlnU|&KkS@vUoR$@kt3npnhz;u!j7-E;;vm5o&Co?w`iheUc~0gw2)tUGfD>9 z_e~B0Tr|0}pq+Iwf{y+OsWlzlpz=1>)T#rQ0ClkBB&JcIguzG!mx~l})|L z{b+&`y#~WBf2JWkS$uKioA0QIH{Fpg(1%asbS<$iNJkW@ zqRwAEq6Sd)Oho5hdVDx})YS+vwJ22oez?pPzDy44Jr%fM1iRqg@A@31fkz8JuWDOv!xYO6ox<&R;i%XmD}-l?{)O!dPb{sXa~8GvQeTC!{Vre+T4F z-kYdME)J?B=PrF($o??`QxVI(`{gh-->jFCJQ@O?ys=vjRSYnQZL%aPj6*(ivo!?n zN(hZgHc!(y7}R2)Y$&kr_Q^uA9NcF-o`9B`SEs!_=>lfcezJL%8)^Rxwl}G=tDP=B zKnNO0qH#0;r}YSV;o<(8rccZ{e@6Ls%obl&;iaTx4hX{YAIDvE4Gpov!MLcrwLCVh zW{7o`VTse5jvVL~>2=T!m}n`<(f-&?hVT6W+~ZN>2*noT?S>LcV>RY}&8DJwxPGoU#Smaeq^U0BBJv^S{C93jVJfA!{i%A~!{(ZFq%Xjl5*!I2^@eiE} z)I%A=ZM~sM{5xPq8g*-sr;a$7g~719-c40+#cHG`2k~sJLqsismjggopX{crq@zjM zL2!>RXZM@6mbn)A47OzP z(|4Knki_8WOxc5DG7Eyt!pG^QE;t;$VE9knrIG3hylH>;HaOe`5wb$<8E}7xV%*tly_xwx~O^fxe^eUaN+J11KXm*(LH+`{$TBu#++w|Q_`vEj0&{N?~#(0!`B?2J9<)6Bp-~7-L7vFvE*We>A@5)uDjmfghoYMC3fV zO_*_tCA#N}7^eNHMH+Y=m-H;+T&7=n{Kd8t8%Q)^+wD2tXLE<*D)+DT0;Vdunq4br z;>2XX58)o-Xp>}|zWyO@5)X>ySV{Ad4TS@%`GfxcfYbTp&VZm!j1hNAn-`xAi(@-r z{5;e)(kebxf4?H$ev9x+$Q-d0DNFdoLOv+44|=D}$ocu}R63pmow0-HbD`bvBMU-A z%r*9w^&$2t#CKIi`!SvIaOgn`=8s@u}@=jSGKn^eHt`|$gmbnQ`f63~VswA)$Py>`--b_uQYQR$& z2hkcAk!vK{Gc=$ZQMlgNk*ie(cuHJBlb$U1r(3FB{?ErI*@@34?z33*** zBP%ZcV8zw2l_dRor{-Yp!SVsLk%;g|EJ}W46vH?JB_c*2?dLdLDp)= zIc1xs`15hbV??13($B63IK)n%mK_m-c=sM6f5xq}ok6CXS zE|6c;`_Qiyj}M*893l9U`CK0%Uwn`4%g2>CJZD$G;UmZQYqeW#O~7RhQtX%p8*mEx zf9_tr_r)WiVZkSOHSfI%YG+I?Rx)X7+M|A{F!ou@xQUaF<>v5u&S%L5+61>PdkbHp z=0y9o?099Z3E?q_MB$mqQAupaoIg)L;Hpok5BR$4sx@Vf7T6(0n<#oL!plTA*l1!! zhM+uQXN(paSC}`wPqu2Z$!{y;)q&Lje-yF+C7wTKIBjB2qKOEeyWM^%`9b{ba04MZ z7d-tvCg<%7u>pm{X@6<5zG22(AzQdZ$wxHyyn-pB^_&?TvN(6dBz+cJ7{CHylj?M&e4L(16YnJ)>4DGf8`~V z^bO?Ayv^@Pvn&FT9$uU1f0&<>-Et>)xKkPYZk%v9R=*RIDn%$NE4-&HF`2f$unTHD ztu&)1@tC`&1D5D0ektZ<*}S`A2oZpVD1DwLN=Hh&5laG!@=V*Gr#?x1te`Zu-> zVREb&^%nnq6=)rNQ6)2lAm@ntfBPqP*~Q4s;I{cwNIU)4L!AYqu3F)2w8B)Df0^+9=!thl zI;^VSgyuFXGl&R*;z29}^|D~@+W}MS^UXmkF7tZA^FH^%rS5@yS(e`n#O8 zMZ=M3^Aye$w~B2z?ffRzkmgDprmDCuzbXc8cdr}>zEt9Z8^aGY{RIXJq(s~z^d;uy zQHzwwQ1P8OP)PhCfBJ{a+wOY9d)nUPP` zdXwl*^wX%-yo`#KRA)t z^fOmu(M!W(^(SLllztcwAKm*G_sRSy@!2$0@y%8*wu>Xk54;Kq&3q*v!EU;RlzhPl z^6g$Dkh>psD=`^xdM8?!i+Rm<29oa{u%nCw7aA&}YF*RM&x8}TsYZ?I5}^DKh=Aas zhkaQBw|!XyvC}FyF*q?YG&3tOF()uECn*XqO>bmGVRU66C`39kFfubRF)}wXI59Fb zGnZH`1lj^PF_RGrD1W^?S#R6M*6;ome7qlun6ocHae+9Ao2FSD+e!Mh$b(|jwr*v~ zmE<((ufJy*l0#9{;u;sQhQr~RnX@lL$*K^AETS)zC{&1rjD-%NP^Pdh7D^Y+!JRLH zG=*|Sl)BKekRqBw!%P|VfwqOz9_~#cjfdxtG5j zY6HpuKpfC2j)ED0vezgj6e@^J z;sbbcAaNuBk+4+|KsYQH6e--_P_4A^K76^JYtc^Km7 z16XAa(|>Vug#P!xX@g@}wD|GIqCD1!C_KR~D0|&SLb(g-=dpeW?^#RH9WInq%tCq#@z=!9@MR{I*TNa;d{MRx_$sUK| zqp&DrM#h1hyp|hi-D({-GD>rfW&F=My_R1O<$sG^<%`mf&6i9aazZnTa&~3(clecY zw_)8wi4HxY-T#Q_mWmE>83Vv&tGG_oxx#Ewk_Yldt5v>e@z{J>?=f;WF<>t_7jt%b z^uK*}F0jT|@g z<#+Goq5KS2r4AKbgNug-vP5$T>8JLG7P3lp=pow-&_V)w2gjIjfe3kS1Dp z2>F%9Ia0zf14JbNIA{wCaz9E7;4X+mV1J~grF4Kkq_Z#%S*U{j_=a0=@Ub=mrwN>p z`Vt|z&n?Qwrllcege_Aa=>yv^%`6^Ib9vmjW;Muf1>nv=`2+^C!U2#8`Vb2Q*K9*i zfqmN9LyuRj5h-gC1@D0|sf`|Ha_hAN)VQ^Zo^l&#Zm;!_U*{hwh|Y9@k^{v=ZGS$? z0f*z7HVDM6-%3S@rc02>zSKgBj34J5?6J8Gf%e#;P4H>$W)Iqt+d#aOl5UJw$UtIj z8j_YTo9+Znh`=eEmf%%~T4@M0aiP22hD%&COJME9%k@VXmqb*q16iB%mFKQDY1#bZ z{pwT$DwBQC<`D+2P|hI|)LOFWpnp)c71$Km4j8jaeSZ2+T3#n_c`qv@5=kI_?s!9|@^!zM@_6xlxdfuPXoIEPOoFgGTcv@)%b`a$BXh_=tWq_eQH724z3ZenT74!YKvmZ+X!AB_VySgxaE-$(O(9OJ~ep63}XPE*8~(?aAY*- zvl!AC60Sn3qQZ5&)ui`PG(c%-S|at?)p^@&lQyOniulzbZ*V!r-TK(j)Tb}eO-ozj znr*nR0~$vTljiccK?URyGJjPD$-x=KfEHpKQZIkT^l+bAv{;Yf)ToHF94Zo7a75N> z?+7JD5icSMI+AtR3gK%nYmDPjy-D&Tng2?VL5_soeP;O|e=;k@L$>j1u$84Z95Tq~A zDcOJ#(sObyXkCrE4(T_dfdzo1G6%Gm^&GYZe-7HtE(ydN$bSzyG!#e4KV%&SCs>N9 zf^^%VVdT{I+nj%SD%44fGQs3ll6jIkmnk^$;=TocyV~2OB}Z-3XZLA4EK1G#(R#m? z)NU0l55j9fmA46UAQ>kuN-WV3mkv zU*J@iTF2`+aDRs(l8y<=1VH&PZNupABGn#}5H(nEI&x&V0A>P~P(V$Kfw!Vi??{O# zTiQ~OWGpjODfQc$`y9%+RkiA1xMf&@LD^7IY@#DqjK#9H=+G^N-Bfc4a@^4*XzK+! zQMe+@a10%IUA6|I5-_#+)G3H!rU=Idl}hJP%suP!Px0-I^oE+4hUfUFjj zjtg=qAU%n^=aA`jNZF30oDQoiGFJ#UsA%L@*wm?7j-H(lCGSiVzQ>{j!&`#mTsCka zubQejk|dBLmV&dRr>-M8Zd5iFNZRQ(n4x!$9x5n1ozir zH}pxf8!QsGM$?Dy((#iFHARpPqtS> z@`Ad_fixve7GJ|V;=S^zx@}hCXhZYU4vI8`+l%OO{=pTOfHhvZw`o6v%Rg8$A6Y# zEy=ySffj4eEbD$IJsR!ERJCgaooPY?%@CTLvt}Q~0?D2xP0CI`X=l(hNDrMI7J{z661Br%1mQm0DE);MaAcrZ_++_NG2mMIRi=7to6j$^jK-12mIQgn$nb z4;t_}ug5df+A6)OsMkg){Kkn8u7A0)lynfmG^r)MMxF0)8N)|#O;1Hib(-figT}0M zBq}^ZOLH42ex?J3I!fiZ-#%k>xz8={$7@92?wYmuN`%z}(~liLJR`MS$#CT&BZVex zJ==QTlB@81az$BCs$lpjjcYC1704PbSyW_;BAC=>t8u@x8s``M%0N(5&VNyHeAbH@ zj*9fEO7{rEn8Giq3|oWCqFFL+kw)2nD@tc9k&rw($2gwZK-aIn$Q>oWP6q(|%CCJT zif=8SSBs1J_-;9y^IOcfqg#0L{`CC$vu8iN_;B_{3V1LXT`vm55J&WG^hqe5$cSG} zL!!gygYxO(0$+>*__NX7%YSNoeX~T)9hA65dh+vfG#Ot!onB8Wyggf1w;uuMp!_vW zFgC*co6#I!TmGv&`ajaW=@3;uFJF|$%-pI^LwU2`jJU=|op@kAq^yr6Fxx|Ug9*bcM&j?7YO1G8QbFTQqY z)BDhN`tIG)vtNL=H-Dq$&5Li#YPuNDP$N#O>-))QzMf8HP$wL|v9sWmy=uuc9UT`L zjZh*E(CA`DqLw*{U*@BW>Sj55ib9 zXZ786d57O;sORN3>8_dAxw|eG_qVsBB{1@Gyttc;zPAI*>VMm^{8}NSFBfBELq~RY zAK86;@$%)z|4*`G#%>dwRviGmsI0;V-3hybI@*6VckL9QG zS2E{|8StXKtR~A*c~xG|tI@KWlO9jdqHn9~QF&L}^xe%^f-!$9zjyfL_um zi7b}3elGKBXpYE_#w;iIi}KI%&--eDUJW|4Wp(*w!oYM#D^QOIAv$OAc`+F+ZaPu= z9^&+0Xn*MC-@SMp_KIm|@1DN=^s3PcwM8ow`ouurWuuvz;AOj#uR` zl+`53jjMUJ7%xD8*GUF-5|cCLd!HeD1&X)tj$Zuwu4c$)-v>F2MJvG{gc!0Cn>j(4y{U-6Eei2ko=~mpUga*MOoOeZi54T4KDID zW&anMm%Acg*7ISl2W#?%Kgr)LTd$JyD()9#UOzql4b%U#(R8u7R&o?zF#UJ<^*3#X z<9{pO?vnoNoKH6N1I^DATe>{5gt}B5p9v^bTh`&zLie3vn0{`uBP6!p*ZKvjm`}y`4 zFF&4q=#sa^!(-MLt;IK4csv{*L%)WdSJE2RhCZ=-dFl7h&p$o;>4!IGM}sF#Kz|ox zFrrX+j22av&>Lq4J@Zgj+p!y`bGlA*GNf4JL0?QSW|vUX!ZzcpE70;O{&L`Vsk-$p zbiC=wAxf?UjvGp3i#_Hh;Ff6gwQL;@rR&m&IB49q*9M_@bGyz4jHbD3az>P zEp(*9x3Ho1(G&v$M!MHFY;7gD43crt3 zC;Y^LDaP{h4qu3uOZ*xN#>w4K7PW$Ryc*8L zVNKVwLi*4;OJqyth&!&8NMGl|@tbFvo8OJ>NQE00aaWv-Ot8d4`cl=^sego^?yoB+ zlxbECtxNR4m2j@d2~SFIk^*o*!K{yhH^ym>*c9KXzN5N|iU+n}&>l(z3MV<)ESzpi zHd3H9mFh1|t$NZ{sE~k{pCE0@YgEV#x@Brxofgq$H6W)XoQzyIr?+j!)=SmOzwy@s zO>wlN5ownS<%YTw?aS$B#(P&Z850iSw`5kYJKQyNwJ{^zeizRx)!h!F9 zJ<4uAjW3rs3;c;ZL7vY(OvivCddY#@X%jj-9LTO<=vFb5D#H-6^#(y@HxVGSATOj?0~S_AK@)0 zeJcp7EesYdgT)T``u*|US_gD7jy)X~0}OU*6=BgwIP8z`wzPQ#-<}GakRgmWwL-`p z@QwT9yDbmy;*0;PVpj(5fH42&a!)tAlFP0l*wfjNdojGJ{cK-DrQ9E%p;w?QzDjL& zuCkT1Gb@ZUp^vEAAAiw-w~s4$nvG#9$J4|e@O(hv+He-X;+}fA#*TMtMeW=Us6HTG zZ8#uaLAB?XOxKfUcH?)z^#P%3`0REC)y*y`kE(VT4R}D18a{Vj@t!?rWW*4vyJ)}z z;?wZ?=L)J@>_5*{><*|tATkXcKd#`}vnkWH|4dQC4tU1@sbl@qA!m!MZj)-e%2aE5 z$f`Bb2>+qM0{^4IJs!Qb|M;T*w>!U#FQI1Oe>A}J@!x0Bh5w0w=6|N3Y5&g~7FR=y zYyN))#%x<5)H7t7q1McJHUb5mT_5n&W-oyGFG$DpQGDa{kL_$L~ zH8(LqLP0_`GDAWzGC?yiMl&=vLPa=6J|H|YMldi$LPIq*H!(p%K|(b$LqaezK{GH$ zGc-0rML0%2T?#KuWo~D5Xdp8*IG1q|1Sx+V&ABf`Q5eSI@4e>^u668V9|kk_eP72u zj8-BNAwi+hD=5?&3JIn76NG{ejY2{}C88tI3KHSGU-RU5-g|S7h{&HKk_jRZ$q?2Q z86%@)l0-=_86ZQXpNx|}GC^W+J3@NPG%>`1c;CA95Fc?N`8T>Hk_1TgjvfbzN0NUa zt#RE(ND4`YM8mqJkyJ?hO^?H*o6L|5k`7te)USS$Njgau=^)vpjpUFnl1uVPJIN;j zQa}nx5h*4mq?DAAASs8e-Rrv*kd0lf5agj>s}cx3YgGYV7h2W8{H#_OSb5Zn09%Dx zHE_I3ty(xsr&@Jz&W^R}VFGDd4KQ5Gt6GgP*DYF2Fi%%n%`mUfYJvGU&}xPG+!vUy zBg@aB<#*Kb_bzaqJ&W(#;w@TIuPpvKOU}9_ux%;kFToQ_<+&wtYpH*+G=J&!aWV_H g-DkJho%{pU{5-3dyhH>Y3^*|`GdT(+B}Gq03XyQ@DF6Tf delta 96668 zcmV(yKYUvaPWND z(Phd55C1L5#vj4~a-k$#zfgF9Bw?5=aQM@{?BP0@Ny^r98-)pvhbu2SWaTNwYQ znzEQgwAPnh zQwzAT(aGm66CZI~KeTONv}Z~@f8Eqw-vXbLLu&sRhk={rN+qbFrAkmRDk%?hS2_ls z`~g{4#lV44`B})=f2lnR5nE*P@ZETvP>0E+8f+Y!xa6+vs�ds>6n~LcIeYyT-%r zKcEcg8aUR$EU+^&qD+mA$ml}Y9Bx3IgSpIEn#zT8X`Iw-dDE%}l^n@n1wR~Le~#S(^x}8lpcWswLxQ8J zgWza~stY?G!O}fR4|*e!!7LV;MUmO$eyqxDbk!moUlj=;Q16c&kNtY8dLO8LTcUC7 z_PAlsAI+qQng?>wd~w!15D(2RND>by*Zqe% zJMHQZ^&m9Q+CYS}zBI5~>zzO3n40>b?_{wrnZ4iMTf8Wh&@c!{?A76M_R_OEn@p4Wk zfA!?2;V~tiJk^)@22y^|FtEM|7HKx}I@||yA?E_kxcGpMD_RcpcV+LpaO#gIavXcU zcp-%b9Z&9Ea?r#@9QpQT$E2nX6qGX(j!hdVRSkTGX=S~MjWGSx!zjg3mpp>ndDxeM z748Ldf4~KIbVZMvn)78w3iYb>8X>b+jMo5O_)6PFDW*F4dxM-m26yPJ$n}L3G0s#Q zx)8=p{tSK>9M9;8ybxLq@9}Pq3nwxYC$N0ayOO46w#`zJoqhgxZreh*VtBqE!X|FQ zn@Cl9b&pJ>*&t~-%LvRE_W0f09w{KOK^1C_e~-x?6bfbXo^P$92Lue%4n&3PL| zeo8VZQ;zXrL7fN_0UciikLm%$dnf9&8?iO`&0@Y&$BN7nkH%@pT{OE%;33v`Es z$VP<-0$UsZz@ew!a7^wI%fXBN9Qa(9VeRm2Sz5TZ0`VH(dX`!cNCpvBUBrej%M2p? z0WvRGY14#+V9jI)N?edgQbxa#8_a4AW3E}57nq-i1M=|!+X*vhWYi$#^S+c+ zJDV`T4C^902taoL%4V>7MY)ZMe+Z{%i^nZcb2OMndxUBDFuNP3-i5Rq>E*-2;VI-d zDJc(#=WM~42;ZQ^nG@viA$w5L2907Cvr!lPXQl#=#JG+jZkR9H!YFcQig@8{Tp)Wqfae}XOje`dB;g~C#b zgw#dl_IXR%VxDKyNOj`uXyobF%XT}w?LK#*5N3V1oc{&KZ+BF&47 zx(?dvoaKN}?SPD;ahcIIA@*X%C32HbLE40W1);5gozK(e*_Xmu^;O5Iw;uPKHJt-= z$(}Kl&oE`Jo$Bxcs%Ui%f9_Jw+zx@Cy^2(an+<1ug&^O;^QE;E1w28l1E19hHV;@`(a@8!AHke;BVRaNl4ZSDr&Q z%;>Ow{KUJ3T2^z<-7=Jw$}kFnlQvKRo2>hIO#HTf2a_l>4FWVQ(QdB1aS^}nW=%^$ zL?2w5MvS25;Vu9(Yt8>8E1TFbCuJk_U%!wY1FBw)rg84$ilGWqZJ(IX5H^Aa6|H;JE+<0P=aF29{bopae_*&CvNfGS-qcmQn(C06 z@hA}2ScV+^P6;(km@uhfLO<37(^x0h=oMQZjzR~@=)MlA5ntfjPk=_osu!t-&;;lZ zlWGo^TFoZ*ilUf2|F8r>)lEnZL004zf%bV?1WtpaWDriy02?>)GOe zStIZtdE>ueLos$xV@FJ;&r^Xnu=X1ywgK>0cZ1NP#cjfu1DhXn8*&ybN(Fg_pFpE* zlWo&F{KX2uHAl!hdWrA;eEaU--s^e&lW`^!v-$}JLjf|A0Zl4@*>c>*@m*iBdCIcl zoy>hmrH3eqQ*k+pW2u}}S$+UXP=ve(1?-ac-=}*H0E3-9NHNJvUWnPjV7jNL?{2<% z|Kj&w3o&DiIHmaP{msle!X29#sfm#=b3OZUE(p6=C`IS*Z|jSN&}RN_TW$SN&)?lu zSM|kD@4tba=!{W+;wXF%JJH#KQ=*&-oA__Jrt|Ci17&jEtUuy!Hot2(cQ7*Zy4_yD z^2JaH_vF_Xwee4J8+U^C~{!H_YxGZT!#?i*kh0HJ-A&W%H+JbGJSosTP}YM-$bg`*Wt}&Joji{F<$}!!fH5p;V=W$ z8pKHmG52XewfbxvQt@wE5f=NoWwjf@dC>D?Srzll{NrW+TRRW_ev5F1YDw;%@%OJ{K z7^7$iuIAq*p6IsCRe1Hs&FXHq^^DyimL()PgZpQHE&(DXTr3e*r4=JVLKszm-VMkF zp(%iJf*9Ac;+qmA#);JZsl(9_MuB%0!dc>&%q3%8q$RxX;Vv#g*MOkvd0T%3V%6D#aFWI*gUM#G8YohzVSM~FWi@b>&y+^?@FjU z5FeWxrG3-`OFs|Kn$tXM&f;15d_2p~;#pU^ys7S$jE$-J8oec3JS)?%`&6?OtrjSM zZ18K~Bn!nsC5n=1m4?lA(ViKw;k}XZ?yjV$#e@IWUN>uR0B~|u-GzbojGeklAKix-kvAC6q2p8!?(*^RgE( zR&dA7zdXnM_sh`1MwvXsx*+Q649*1x=Vr{fhx`IbxD*poOtpp^X-?1qUS~vq)p01) z;erhG`G2Itp5QK>5$Y6>3iml;sQ0Da92{O{eD}Jr7g`_CTl+WBhEJ_!K{`F79R2Y4Zy45tvI2x>CT>M6$o%Y<+y@^8!Vg7LHKI!~W(hnKsWa z(}-Ww1x0>UEtePu;hc}eaIj~8l5z4Lb5EG;x!P{p@NvkJ>?uqQM$*ZnNWoAKYWbnr z-Uc9T-NiK4)ixrvi54dzcQDRnz;KN7qk(Qv)p^i8adCuJ-V?~O2jAAK6^7gzJgD>; z%N%crri{#-8v)1Y<8uer^FpzCb%lT9+Yo45h;4ClbLkh1a|w3tmuGQ*F7D-T58gK2 zX0>VWZqsT{EO@`|;qTg;DM)YYBfgob4__%e->orL$5D583$e4}^Z2G&hiAVOJ-@b# zt3U66J*sPenra;<6O&9l8w-5-B;O{dJNgQ4>?@QnRe{z;{mt=iA8*NXhap;W=G9!3 zD?tyWcm>hQo(}85`*b3IhdJ?Lv_!qZ2u}&)`?6!HheXaJ0=5$2dn&vwXm2dMmPNQPjB)LLj7z=x^$UM45iB@Q^a!bdq&*paE-MQ;()Fd0ljv}d)D@@ z&mlljSJgRk^u3}ilDLPeN)kgkkt5|*zln0$k zV{rxtp79rK-locb$~Me@-hpndeC1>tK0TmY!CSRMlzKc4W5)tV;04Uvjn)BgwOb!L zB1ShJ&CP0ZfKA(cY}N#*0EYYfx&tQzKRMtl=)r-xFFUY~^|S{EVYkF;6v7FV;{)JW z3Th&aBKbkkjmb^j1DG|uJfUK)7)SlBNTKI(kGk#PYP+<5G=38dB#yj+tczh01$eGM z+HcDY&x9Tq8&0}-_hlDv&}4zvr8J4x^OzEb9Cyr&$csO}fARSRG7M}x18)n$7%%{o z6F$3Iz4-AbI=hBf-=Jsj?CilWT+M)>n&Vf?*}E72c<}~{rCB(Xb`nm(N|~wJ3@t!N z>?v!PdF4!h9aq+9)&O^6Wo~UJ{01?AHpd`&T8{EEw0v(0t?_8t1NvaVFt>p%u6&^r z*yu78DZ?!Cl$nP*PP_G`NSKYK$WpC^JMcld47q%*GftWWo(y#62%j$uJ{Q?m=kw*` zNy)(?sVTfZ@lfDk4a_S&3+oKDrZewT=z(7#!eo4Z1Uu(*CYfhvVIlSv@))Os2A4jk ze2CNgy^IBwX^(TdoDi*uIX8K##AT7Q#+2r;D0x6~v{8Vxz}(-F>jrc|H)>4 zOFdTyq2`woq9A1VUH4Uqw}k~6QWNbs^<|YFWmA|g?Gr2+JuVvBv!VUM60{*kN70z* z7$hJC6CwtTw!H^BQG5Whr%nelQ>tIfq1Zk1TeHP?j^*~FG zpFJ=2{LVYTGt{ z*uiw98!__NU$I%onfc9Tx!jKNS&+TosEm}$J zw9*ffkUeqIMXwZ^_e zqXO6XH-Yn&>p6eiJ?%e-cfD-ER3Xv zS2sU^2G^+?{m)|1EW8Vw>kDju&knV-3rraTc^`#)(MZ{_U4xe%JZB zC3f=Ei|b}pgYnp`D?pv-6~dn17{EXTGw&ucI@N`(YJ*a8Ipqsmr2ec zlVJyMv}ehjXE*~#j-PISd>l%X2W}_3<+nghJAYMj@8K3H7yB$TDHjogZBeHRq5@Qy z?`ZK=?%`ihf?1ZJe|WLZt$}Zcc;{PRS>6`S9N1_PyU$N0P_l3K z`O^FRRJcz8_bDHHpH-3Iuo9D8X6uawwMW3|10mX-F zdKNs~4bpo}_{0B3psLLAa3R(9Vyb`diBv13TE8IGZkXz?L=1*0?ML~!r&6tvAT><& z-(;$-6r?Xd#yrz{&HN8+bQg#PBJXfC5MAhCbyfpOWzTO}yB2aoy!zdPwz-LUvt3ybl9VJx_lak5qKD z8svWHFXl`FZ^2}{CFLz3?v`76v+ManI)Abh!T^`PtHoC$anF(Ys#;Jk@tT;h!T(kZ zs<~ufCWx2S!oRQ*`Q9yT^3j?DDg@^u-;1;IgZ${O4W1she`U zF8Ay7>!z&Xir^NhEYqS7;+EpFxRIVaE0PmkRv$N3A3s%}1d?p^iF6g$8dR(&c+0$1 zuhi0Ux&>hBqLv1(^LBUpWN7us&_ZYWUi(0V>6l05K=Sq?N*70~Hz0yQQB=X*O)Uy!W(Ph9a6->L?&iX$MEpaph2M^1-ub%c* z4L(EP#YT$n=(Z}g*?#I0U!|KCq8WdNF2S$^9WV=+ac;+$ZT981 z-b92ZZwhtYV>Tn81#%ZsOt5wSuzi9}xfsTo~B@`SB`W36@Z z{cc-Ve;s1CV|Kx;>NP4$)YG~4-LrEC#vRf39Sus+9{2g_4+0(r;WBM;wD^d%PT^2$ z=5?5?NML^}9OHh)q3vb3ru#T{l%0G65Z$3dC8Cd?E#he=inw&`X-0}XGNYvE7sHF6 ztFk^|uB^6AeS97Iq;2~;CT(OPxU3gCzg2!tXt()n0)6`JP;Q&UBNeUW2EqxX=>T8d zXF4BEuYOow{R?O6jRXp1Ze(+Ga%Ev{3T19&Z(_61X4D7~H8Kh>Ol59obZ9alGBY=iEEq-*5D2nN>Bb=B`z1^&X>}oLEtXUdYte7$|NFa-wHuVB!JD$|>90 z7=f6X=!I>qO#v(nOiXO>0}O2FmZY(e>wnIn3%ZX$pI2T z5YXY>X$mlQ2gm`Pj8xt2fXo0YqrZTnt)mmYv617u8wmPh0RmFLQ$%d-+#M{wm^=N+ z!Aej6C(|FcFato^$i&Ll)zQiVU<5J+NHfSW0OW05-;EXkDq9f17-()}Z3eJ41E>Nu z0ct8@$|?W}Wd$`we-&zm_rxmBc6PQ7|D#1jMO96L4j?KduPO!rs?z}^)Kpaeys830 z@A|*c0pwNR{eSAb2mYbUiKz;yYAK2_Gyb^-05iY^=-_Dar|f@eqj*;a_*>dL)y%=x z=C1+(Dsv|%J03e45xBZvX=Dn5gq<6d1zlFUw!s$;=>wkp<9D%_9C}VEq z_!n1JQBf9PV`Kqx0)mV{ChvhxMo!L-0K>m*?@yp9<-Y_10V2*04u5LM{jba6-(~(+ zy0Gp0mFZf0e|j6a{`ZO*ft(#Z{?VKNylfL&kfVj8ljFZK0s&?g*1$jN9sjJE1?VrE zoRGYfxR{D6z3ltof#~II-@5~1aB_3{EBa49AyHW#02dPnfSH>O!1O+(VjxoyTN|5q z)sFCg+9zu9-X|wp2Y1H*nrbVMtt-g$zpZ8#AXBqHe_c0qwqsNSS=c)Rr9}TH_T2>k zx9tni3BUvZ+5>=YCgzNPO8qq{f6UB(%liHtsWc@y{?}v`XpEC;O;Z_fa+ly8SgI07eFotzZ`Bd+&I#lI07fKm0|h?^6@X!JLF=NbPS ze=##L0~mpSLzegYW)}a(?5uyF%ijU)Ebj(eXNP|zc&}yt56BK+wD<>n*KGL@_@3V8 zZ^-knKIz7W8-N_vK`?13FmPn*M|FUi@z@?C;3Y!tEdKcZ$>B?)UUg z<_^GrT+MrZCs*5l5Z;^P@^{5|13=Hh%?@DZ zVB&n&%*yKhA6%1v9pZl-9PbnUzxdAy3IGD#fF|%Oi?$}8gDg{*nG{8~vXVS{KFR)|VomZOEbG_J)}*SbTT>;$ zT_YbkAADpnp|MD&UX61LgQw)i$8fZEtk5$=xe$7q(xH?->% z65aB)^?Yd8uk*~!m=4zHZp)~6f1UWt)1BZ>Z;zOQS41tHjD(lB|K3q4^3l8Xbu` z{$LjF(PM;ZiXHh?WWY>VxVs3S&n1lS6Y8;7h0<*o+r)@0awVtbj-LY}>#Bp1Koord zPqha0o#Yzd!-8K*vCbU0e~Y-XUeWvHu#t-XhNRSjTn49TuUK`?m64@OjShH^srWWGI4C(Us)Fx5 z_1V92xbCcmcByI++TLKe;>4<%RJ1JD-P{Q!M1&sMA_)Ade~x#8r!Z#rTn3# z@l&Y(vgck(=pYY9f8?{3m5* zz7V7q`}E=(ZMCMh>O>egmEB9~?(ZsmB`_%6E{A4@fZ`n+#y$%5y-h_@-ky%3uQIt` zoP$j$>=K7OLaLrw4F&2;U54z25yZ7suCEvT(SL7ev=)8He?g23)>R_Qr6Un+I>py# zLiFVdg4r7sON!gOA8l)7K4n%WG||Dt;<`$hBO*JV4ZGz@4TlrS_Q0|nzVU)2QEyLA zaZBCjnD;3(d+wl%hi(=T6#U?7T+*Sc_7R%uQ{mcAdMD4@(@)zfkj8lER1tKBs9Lfi zY&_p1qkpZ2f9I^nIjfH$GpmupB3sh5MzsdPYJ@GMYAW-;#!13ZFhb>6h=AC=&1;zi z2mFqe6fyRyGpMIbdOr(J5(CdKlk8g#3irc924uW=3uNq>%49DRNwyFtV}A(hDSuuD ztKURN?511aN3LmYNcIe(?X-(kF3dZQ9U`a-Z~N&te;cN*MqVo_b6tInC$iS(xQ4&o zd$;{n#7L|=DBi_#?g3ow81O^ia+(J*s)>5AQbM}#3I`VNx*JS@DgA@kZMdYpd%-c0 zeEcUT4vWB}9aF>)vdRQE?#i}#&(7n7aY-LWI8eEpW>Z(#hAs)D1FeMi1gsg+Itl_& z@A5|?f8Pik$x|$Lt0}m<;3sVqYks;a`%88F_VIxy9nzv~csf1^y-(F(HJIhxyEiFY zHk=C*$)k|%Bio9L*gbCFtAtrhPGHgVT$6#qx+dm|JSyf_qK46q<}6bQp$ zcWd|g>B>$W5xze2H)#Z{R+|P?`e?aOu9|I4p-9o?HW+j1O!~f5#?A+ZAo~l+2jI)| ze=(@v(d!{|-XFN9H)!8TZa_Ri;O^n?Dez%wtnY(bSE-}>^(@+TrKzL_ixLLqr_l2N_pE#58?kzq!dV2ge`DB{L0r9P{>;s1Gd@V&W-jwm3!5cJ2PP4) zR^HR@GW-oRPoA7gT=s_)N!OnwEBo{0w#;nJH--M=SZ#Si7k&esy$ro~ZdMI=+Qf*M zYr6PDiN3*HkdaaH?&i~Ty1^ztZilJ3JJgb6c9`~j)dXi)X)?<$BacI0@-?MGhg zu7o3~1Y!TZWIBszJuo)ghaG|Ne`^*a^@~7ABIpoPZ3v1G9J+6Jyc`6r@7KXrOop>T zj>h(}@D@+GDk3BUkGux2W(+{7csjtPfR__HNcJW=dpbL*8+IPMrq8lJOmgTd$H39N z{v{{=Msx>+ukVsKzlukd_ch08<0f7=aeiLRL4xn%%xGH6$=vwJu_8Eu zPuz^;pm1K!>SfVrj=v3Vf9yL3GNz3fMDTk%3kr(Nvcf z>1R;4PX!(uAOhHWQJ7sXVMG?(fL#IOqqtyDuLXYML0gt!J0aTV{hOWxWA)LE7{SdhY**xQ)pKift ze3uf8fJp1Z&aXL=dM+HnlQT6am~ZB zc`8%W$^&4ZE&5nl8fp!pnhBA#}Qwm@1g!+wWhm?cO@bi$f&ZA<}tq z?nt7upLLUnGH*;dC=F2WFhm!;s;zz8uS^HPkJt~WHG)^f-xV1|9q zs5VmPF3?~4xhER*BdBxJQ~G(8c)ASYn!rHuWfdGs|LU=0*DQ5tt>+0kMA0hS(zx9v zed#xQ-*aeVtI4GCjR2w+g+RVMK?eMvU3%HQR)p%De|Xk@aZ@YUJf+mB^er7qX*%7q zo%)TN(=PuDVotC1k^}ix{KYqgz0W*E3f|HX!XGDE6M5`ok!^B`-BR@mwH;(cb*sLC z6tq1zuiR=ubYZ`8OhRC2kGOju=iuKq14cL5vT2G7Nqe5tvQ!HZhd{BU-TTYq{YEB;$_85I0jN(mP4rZ)b_k_p?A8zIfPvC zCv=T2G}v)r%hc1!r7&16YGp{(BsDb}Mr(cyY|p0t5$do+&RA3Im=a2&fxO0mWqXvV ze;xx7;K(k-ToCWh{s>m@jro>gU(SOC)1JDx%)Z{{r|N=>bXCf$v(iDQ(ecwa!#rf< zihl(1D40eGW$NZyC$w1)I8n#jD91}-R?&$oa1ML<;lruQ_7s{#vI)^=Omoj1_D@8i zij#C-iDu%5)tmN4ABfFM*`e=sM5^b|e;hh1VE4PXOJ2nCjKIcuHc30GF=|sqfmTu` z<;Il;R!Z(#_sk`^6t=1`!Y3s)!|fC(?l>92Ic< z*1yknS4rSPvGEva4{wPXTXxFY9Q|@p*od@rv^`&GC5S3{4|>`&pe)~zc(lG`fA$gM ziBL9?aKW_vN}4YvH26(Cx9+=HBZJhDt@Tx_uCuK_rX2Co8tM3n$iuGjAR(CI;U^xU zLnl3VAYbzfmoyqGG5BC-&?f1O+JAee2i&n>QzB@zRlsgZ~X0dpAHYZ^X`@yyKe z$QEHqh@~q7d(>vxbI}D>_!d6`RopDpzAhi=K6em_)xo=3b)Etvx$Z`jqP$#!^LNh+ zeS+qvq{o)x080OMblX>}9d6XaEB|T9Yp#H7(I@2_T8a5U(75Dy^{3{we|FH4O-BPP zlTV)V`z^9^S069&DI&@ysk41f3eA{Z@{NcZI^SIH0^gBxr%L^b4IFX>v^A^HuX%91 zYI@q{)U`p}Pk#QR_`td{K{Ijpy_TR6yXq$zfOCFD6#X{+@lM1N4!wkl!2Ec{1=9sN=tkx=R}D-~1)kPbDe>7J{57nqL+ z$db+w4(`Pr?re_Lpz@-wU?mD-kZ z7vh@3WaG1Z&+%ip$&0$>5o|SJwAx7vfo~RBRg>^4ku4^wER0=&EXQ?ZJZ5ha;#GMu zA*8kkCd~z@{AGfrMbGv}^}XOI?o(-WU{2L6N=7)RD6GLpkjQpuY@{)(Y0V+NHhY#d z95pt7%)Ozz7|yETe*+b$9RCwWK#tG|$yOR#*kul}* zqY@?{wZPJ>EbTQ~anso{;u-Vzt2Ys82Nq*&p&_9C8aG!^f0^6_qPnhbD=FMhA@$aZ zsSf(jOZV#IU&Huyzdn_rZN~%yBk-GxBt)ZKA73%lTXdqR!pNR9dO8cq6!wT$9cE?O z{eN9mkJ25rO`;rk<^gkwx>8zKaIfKxr*nGrRG_thVY0yzF8Si924YpQn z&K!twD_dCRe_y5@Z&2=C^L3x1FU1U4bzQf9EIm5#U=h|~S%c6WG!w=6@iBXW(Dkjm zincqDhJO#brWue;s0mn{HRz5IdvB5c2GvSxo-Z z@oyZ3)pOcL7Q0X`W-4IsFV2GIzL5>z5p~`l4B0)AS^`d?W84VaCi{8uPhQ1ubuvpJ z?2yvNq|YNTD(24cT3h~BVARg4XX^_=%e^i8h=S2Dlw1$Y9?`#mZUZa92Z5BD^*7Fsye<5k|@;9zT@vit7;=bkZ z6s<(o-_>muOh4p#-Bw$19+gDSb{4R|`GGse67|0z1jRt+I;6VU=Rg)QK%&r!_?IgQ zKeRkN=M*B5N-5My4zQ`U`khx~RXjnRq|#2YgSG+;$?um|DdSS(Ge}gK6{d(6aq>Nyh3$PE8Kq%niIjc_t4{;``k&7$ST1Vy`?72>GDVJTZWZ zRTsFEoXd}4HV1f=>SAR@B1K(}*1gK9F|Ag?G zA2xxP*s-EhAB^8Sg&(ksk9Xpe`auj!f6TsQtU3O=*YeX^>*MihTlgg!c3o!YukXOn zFYTXfxAdB-r}{vr@G1wEZc2D67B@H5xIAhzu4V^*4xGuVhQK=m?F|>M7w572(N#+; zpP6-}zWJRx_OXJfuL&f%=3jwcdYi1wEPUELx%11F7l0}Qe>+f(9{hcWOMtP_f7tAL zE4O&T(*!68Yl^a8i}W^~QbdZg&1dp+ifvJ$&N+bNElXFJhpYxG?Xpcf*pO?`)&Wjg zm2apMJ4nBn?pYe>HJLPrc84d$0!lnN78o=M@s+np5P`n(@Ml zjAymb{VB$H&Tl9vYYRq-_S9{}f1xZR-qnrXA#tD z6@D%loI?ap-$^_(#3F_T($y|e-xw4G6IkT2^X3N}DTHG4q|R8|>~L}Me+;Cg{Rq*p z(j#EOwP)FHO6d<(H*!S8>hh9w$0QNjs9+%@ai3$iYf+YNKaMCrdupkk85W7cD8H)0 zg(;Qv#@q`xS4;wPK|2S&f2a``saot zWg65rKRh3KF_F4U&207pddb=@g2H!bFup@8};v$&|B?{ZKaP z=dzrW1<%uT5Z}s&3jCH;hziR)Sd-lw7HmPDz|*2g6I*Y}*yqSDf$D^Fl2O*^PbFJ^e4+bk60l;3_un+A=a!XX&4WPvDk1qxisorHe-N0M9mRQ=s!h3durz7R zq$EognFxH|iuCrm1S$EBdrdc#7%5|!ag&aP;&yS+vD49&6O9=B+Ik3zxR2ZO6hSPe z00OCoVdHNcSk%jCuhCPaL%g3HH0`#}c2Ft8N}QC{*R#SXWXdKHTf~NW5lJPLX3nED zZb+)~G|9oFe{;m$bR>3syDNZl*;4=_9_ioBiW#`h=D;*UYt-y)>4TO&%T4+@SGhPQ zvV8tcB+W)RP5?f&<>Wj^S6xvThrfSp00J0`oW89M6p@_CxQfOvwf-2X+bc-v5V7KD z5o@85P*$WCaxtIu>BiSI9QzLm^~U6SctNPzF&XUk+J8Cez68se!*ew!@W> z8XcBye-^PV$h~mY3^lD9zu+)qj)be4R*lG5EL-f)BiD=W&-M~28^BIUD4&rE_1xi9 z6rY9e5zd|S+1v!j23DQ}2c$#Qa1wu1@dv6A>=?XM4hZ2r$w(Tppk&Ye@oj9j9d2@!_o+~?j%E`bmC~zI@}oKOZ-l~p z%r(o3;{NFcPq>RHt5iDyRfY?Vc2?=g3__ijq`XU!%P1=y^A|cZ+q^v#o84=V6Dy221M4e`=*RzS}`0K&nrXMi@J1hpQnz#sXiVwV;@k>GNCA?VllyG<&Ix6=f?t3nHHQ?}GsI69gK(SjR=xehQ zmM{+~Yn)4pe{IMZt?;eOWLMsF+xlhEK1hyC38hZWH|V?1IR%G_QKzN+f1I13gH<1r zywv2B(-WOZKFXs4{LZpHP;k>!IKwOWz^;&eu)I@R8#Ze4daGWdkBRg{p41%`aAoQ> zbxB$T)kQVuRXQd4e3d%~hD`=#Qtug5^=QvuA=1ZcaY1u|OLpY8-f1Zb$>)3j9qBOvy-nSW`k$)^{x+N!y8zkuRsWISm*8z0W zQ9>UdmyZcj3dG*fu=7(j8OZOqZ>nSEH$2iIN1Rphqq!u7S=XdFd6^!;Mhvlk!gWrz z7UUyr?3`W4LIIeSV@{UCpx7-h>46b=%0aX$%~ry)S3#Z+vV>IXf3wPEb4q97TSJ;R zNm}y37>f%|(;1l}456(50OAjX<&X&tSjEBd=c{Mm)M*L@q<-gb_^7?e>#Iwocv&2Q za@~n(7ZOIWGQz5MMP2jDGx?y9i#I4;$guNNV1DxE&#NCF>mLY2rNg;~ou0*={Y)lLi+HoV__qOgUbS z{|R-r0?X2zL7d;hj>PPF3aT;#vBLBNsP$)%Q&M(ce@X_Wo1jufj`7$6d{_A0s_2=6 z!@X8(NHz?pHt07uvQ+j6xHa2HWzVCEL4Tr(3Hy=2GlHsYeN%8QOtfs09ox2T+qTUe z+s+r;wv8Rzwr$&Xa{iZ7r|Q;yn|WPRGqb9@SGV;ex~(8Bk+%^0={=}f?j^_d&T;X~ z;@nH}`yzKHT(eksM%g=`YoSRYT58fI=u}Y}O(0MCPF7-lxo5I1pSI}ga+ROOamhtnNqP`epp30ZS_rR<8pVf%*(|uHq&~R0j zaR(saLw88B(yC8cMw7^jZP^pTpq`7k$cksJsSb{#9J`Lu(Qg?43oB64{5zht{d-ZVXQr=R{%3$OmC~0R+wljs1{#*@tzHRbyJsR z5LhcK1>b!<0WuCy+5S2=dH`Rj>!RO1O0-*O zF!xXQ_K=)=yTX^xZ(uh;=4BPYQ)kS0=>~y|OmWsnCGEx!+=mibLE-~^+lAn%{$n9w zIvvjLnkS+wfj^h2Ks+9+AKXBQZa-=+yQG6AGR~Tp78Gf=N<4ogCkZ?4w!38Hn6wcr1z#Y>UT8v9%W6zS3o))jx!A;`sAo zka=}-rOCFk7&axve zssoh>PuP$tt?+)yN;~Cqf z+4Hpwfoh)SuJDb4LY_dQUzOIqF`JzU=xOsx(>oc8fPicQH%~yQJd3P>>db(mu@cMG zwE`xmYAs(-_9O-P8AaIY2!->SA<#!Uh8=&d`%y1LmRRSFT6l?8K-pO)MS_l~G9B0_ zofn3Zr)zSW!=PujI7h>9BQ7!#qrQ6IZ0Tu~uQv9;sM1_Di7lvmGWiK<20Xi(r3MCO znH@==#x;r!J8ROLK4}XV9!s(pum@m_-3XCKMd7Lb!I=m2?66|Y45)YGLHY1ZiF~Bm z_=uW1?f%ifckY@iUHIi84*l^EiJdkroi=ZRaP7c;T^Rra-*4><)74F}~s zA)i0k2Nnz{AOv&H{kp}8>tkwvs!nzn4+_7T_F``Nk`2|)|7@@9Aa(;Y*`PD!cqYS6 zTzU>0SJV3ZC%#lJe}v^-S6xNFsir-XH_s#zr{dwSdnSwjx}NHRQN65*5V-Q<8fZm& zwq>XxP}aB9N^#dAs6IOOJUTRS2tRYh7WTBG=D-5L#X?fHNOidGp`{E*v0UwK;WW9U z$z(2f(j$%afj6=~4-Sw|PUa%X%cC$bx&|&+pgmjXIL2PE-95I6Ie+KnizhN2V># zAHsgTpt_?pgGFgZn0ecry&S|pNGl2QO=K;>+RDqaTN$$;E53D_4QNm2bIJj5wV8mz z>H-zGrM@GI2H5Jv2+!Y+f0is>7V3Bl#Swwi6@ohJmeb!&W2S}?G)uh{)@jXmIfjxa zbmnZhtk2o>UI&lP&gCfCME+q~2LF*zjg-c~zV80U6R7$WabM@UEVpwix4l=F!^GexM3Ayasa(^@oCn;M|5K zc3p~3Xzbi({Mog>)OtdqF{}v!De=!F$;L)lhmz0D@p0Rt&o(esR|mk~hYQQIi4s-= zNJU5$G%7xYrJRijnUot=t)RYE8ASqVk=gB^^~k*^weF@}U<@aorJf?VOg3u_GBX_>Pg{ zf#LQv#?d|Up8VEI(ZxJiH5k6#M1BYL-0*HFx~dbLT$YJb$YxWU?|&5N%xMvUdP3JM^b|qrh+_)Nu81Mz znX3$Z6t-YRfq&o`gu=Pct?^xtLbx*@{v38+;kvS7V|mJpE!c*Dcx`Ngmta}DV#ZJh z=9xAoX9)-{o2UaC7hH*3{%{S0s_q;)NlJ5$RbzE0c{71w)#~t2l7goAe}W)s1?kVd zH?*=yL(CTQF&&QbndLWG`>`AGEFwafBeeMUiS^i2SARYeicxwaMF`YOdB4Hy68jN2 zcW(Hb*d430*Qd8jpy5OYUf2+mE>WArzVz$ArQNf?nOOn!C4z^Z;t6UipQ7cC-OtXx z1yxQ(6l{H3aFI8G^0U+@QbT<`3J)?7_Sl^smX+;7(u4tS=s*GGhSA%S5U5J)9GmILI}5DLj0 zy=fdcp{fCipBL82YW6O!=&ibSL&;YJTh{avRog4ex>M%pH|A5(otZ-g!*TK@?3q68 zKm_nG1>^9~$1|BeZA{Y(C8Z;~WQIlm$*Fm@WL5TZC?o`&oC62ddONMtE^@!Ms_N-+ zj5dhS#zsSXwWmlGokRSjZJ;9C(|=5S@~5?*5t0e z6|n_Dwa#|!ci{6hD^?ByrY;IJQcHiWukAknbZ1X_SUb#$58Ti{tNzOKjmZmT5q1By zSxBySgG#x9x^_igZe%fL8OHb7InL$6;&6;Yi7H^qXFivOcs_+0k1u42QA>}kVc1UB zi|7FK`)@ilUPT!saljUE`ng<6_{%+zgO=e` zaJ{XdEF|sP6tk9BdZFH)tVuzyejth!H6Q@s?H0klPvgEwX29=1AhfbDaTUX_Y)JpfbM=epQOmT6M)kXW zdi)bcGhyY4*V@ci2$S_SAcQyeMeHq_vdEa^Exz&dC33owN@ z%@^d5+XP{-<=g@x*q-D^zh+r${dEG!D%{09Hd={*R!s@ACUA$Iz8Nt_6Er|!qBW*n z(;)crJwT>ZBA#U8SsaGrPH?8|BfBJW-D5467-!!y7BfkQ+7R@Q;Ie#BBBq{qE*{ud z=~u`JcilwVYtK;Su}3bXo~3)vMC>r)O;NVVj+@quv3YM0vKQRP_^>!&s4D;f@9|LB z`?N#H{t(d8oI=su@^EP7GEl9T>U&=A-PCzSJb=YPK1~Jv{SliHNI_+0FHIWdf5e_J zSFrD__eNO}JBei&iTQxEZAf>sS`^HrMNY~@W|GM>O5B-*7HO8* zGUoWd51C`cT5}@G?kfPUrIkO|DX7k?mux$Qm@W6Mc;J_`9u@|zdlk1xM>zd( zBQ=&T*k=(k90q=QIu=&iW7{oLwRa6JMJl2e&;N1w-q2gy`Tx=g*F_yK}S{ z=%{p`@WI&8AWhD3*1*pq|uXV6w1s z@kNq>Hr4zP{BG3osj<~&o#&V_3($ngzMn-q2yE@43ajP)$jq_Cq{(QCjQm*90~h%H~Dd))_T(<3*#t$)zKb;E_Oc9uUp8JLZTu#Efp8scd3ub^kIA zn)SLi250(X;hGu&$71xQUl{)@s^Qz|iD$`(nk7{qQ#x)f@H)=(qP)05TgzUZ;Ch>6 zkOV>6=?a_I!1tK7%x#WXNYXq&T;h+Ep+L?PC_nuk$qg9CvlP~c^&)ShtV41<7v=(b z1W)|WD(v6)N)T8XJ_v|VQXR#3NjVmyo= zyPf}f}rz(4E`GH#-zl@ zwNJ>Zm>R%eY0VscU1C$hNCGJj`J&9OCAc7o>De67-e867$?{b9;5B-OSsv2urHBXy>KhTh$Gs*{VYHxl_f#RC;a7>qjC?aRlRfa zeJ+4~%>A4v88Ef3ZxQv?O*QwRq&&D=*o^O+IAtoReuO+V;5~7%WQ%aHGhk<0xfh~> z9Q~Ym;euxb4ZIXd{T;)lTztGPxkw3$8ehT!Jt+n5OBvm<*7T(2sLhPZh7cwfm5zCp z6qnikXKH<-)$F{fD#F`dLnMDzGqJzQTQN_Db1C*MKfwVCnupFHu5q?B;~Q)kC^IkqR7?(e{oc0zW-F3s?7KPzw5*+8PL{ie3Pcs*M-J zrg!;EAobO`g$#Z8aAj)W)kbPwTi6^G+U*7je9Tbh->Ra_drm*EH zItPN~9L#ssp57A3S1ohM4NHJ;302&N$)Xe=jLZ`>9hF#aRDaYv)2ejK951DD+$CrO zdWjTl@AO_%V>#c~)wt%yq4#%fCbgJw9ADwH1^Rc9g}{>9-*;DACGc%2i}m!pL06_w zza7V|po(047dUV-0t!2G#wG={{FDrv`yul<~Kw8>|KKzJ=)l!s1goc)NN z^NYm@e!mIvo+L@4UM|U~NkC1bb`dITmMZYU%fE&ee`4AfIOd&@yP?IO{&BSOF%f%kmAe*IJslsAIu zS6!c*TuFE7(mlQ10nG(6o&w&wrPC+VSEc6GSTNkqJ_{E&Y`x?bN?vJB{a1K+m=@O) zCO4u{4(ZK&8?1pnQkM>hIF#6hLssKu9zo$p3<&Kr1U=XMJ(SIVZZ|Ez{G8bMIW@YV z-w=KmLS@*baK`|_TzlZFZ3JydB;#1ZRXUoP4^}%N#fYSxo|UXN`*hs_urMSr zluNsI<5$1ScLyFIqAmz3;Ag&YsWSV%gV z9la}@y^M7 z-iGO(l8RHHo8&o3V7aYbTn#LxfsIj=XW^e+?_U7=#+MiwNc*0Q+i)d#mXW{3=lxzN z4D^cT4u$q30vHl&=}aE6=f^h@TgyoBG9*d~PfM%sim5YJWJv z7~RWB4)L*X>^x`7%ed|ZE&p=@srk#PX!@>7KeJA3*r7ktt>3w_y4^GgiHN%|tr&CnXm1>a~7v=_|56i6sv0F)cA`7vgw+DzP z2R&mk*L2m!Z5u9t==bcfWVl39b)9lFS7;$7cg=?6Cqi_%FIhLzuLe1ifjW?8Hjl40 zvxBKcY{BU1{ioY0@le&|Vx|4JNGMt<`Wjz#TGC4{JA*XI{b(&F*P$4R-jR632?Ce& zK6UHe7Rgjz;x@Bhr&wPf+WA|VQ4A2-`aw$y9=D@%Lx&nd=pr-}QohQt692sZu<~IP zF$=?iqIa7Z!gY}qKo0{EC%dYhWm4b7=(bn=QW##c-MZt4Ul9BQQ6v0n-__{4P6|KC z%_fy7_}DCDLI3a1%n7>l2R~Gvxdh%Sz7ETa*L(Us-u`vNB%2K_a#Ol$G&`WT;io?O zCwHz`e`OY3=YTU>q=y%^X{r{liI$pp_q(MxC&asChhtQ~;NV}Lnjq7gePNf6{b$O` zR6du_ll6h)9N{@-)9YC}{1;lXn)6_vkP;otPvA#MR2h$T)tYpAIK(vF8xe6lg|$p? z=Yqrmq5?AlQ`ExL!OB!r=PrOqJw48)b;vo5AB2WAwD(_iPP`A_5!c{mf3#K94NZ2# zp_-*w7PjhN6-Z1m>me?CT9X~3tt;_=5Af&qZHR+j^JX%;+i86xYuudV)6LC2V{aS$ z<7c(olpM3qC=zk!+ywc}@?%TA{>TwWkF%a)v&SnHLuGl6ZAv{ZCISHV=!hk)mX_=t zX20dHr>V_g5}yLUVRfM%eK8(9M?q0)hdUm`K9q2W^eO}y^+!0@Z3ecwKu=jWG^ZG( zn@+;KEtsn?Kg+*cpsD-eY$B-fE^uGD9hl_U|k(%p?a8apv>d<4; zk-KS;kx~|EL-W}_vCs?hd!M;sa97x3JDXHqQP?j;l93#z#8=x-6>Qs+dVh)6-)QZo zwT!^IeE!tf-2l|T^}9pU<(RBTMCOo`g(#iO!&VsNH*X;b)z5@_XN?Q$n|HigNe>QN zod=}qCirbsA0dEcOTmdVFtFF0Dk;fI9EMfvk(WSoBpB=7)SAIk`r;{cq0J-|UA=gC zO8lj4TYH4~{c_(#U;G2*Mgn%0nmQSD{t=q(zunwe9w*rs_jr;ADLjYl@hhu^ooK_{ zN5pTa^YA=$A8px9m{+32hGVBhHavQ0D^yAO@u&~SZOs6juS(~#bL5c-1dYT!^%K<_ z7%sVy3T3F4go{L%8cy8WkWcW6QdK|ioV6cK?uGx(iw_T9keQw-QS7gRObAmZYZW|0 z?e)Uxr(_0aPVxp}%PJkPN4eZvMyR_N>mWyY;US?rH@a3{@eHoZh3mk}F9;*y>@Ic~ zV;f7q3lV^BB|}dke0IMjxzfBlULFgySaMa}*D3&w@}yEXl{XZN+64%Ze^g491$*x$ z9eU&Rs^~nCcmo@0>6tx*kv5jkg>J3&-T-vwrTI4-Rd=6pD+Q_&`68Ac{dlg_4+dQA(v|EKMeX&yn_RCX?U!Y0xVBK^E!JH z-TmCS*Ce3hQGnb$hiESLNyY+iQ_l@A8PQ5DZR6UEFP}F8lXpkeVwxq`%eP)bmo?+& zfdc?{I-+9>q_=Wgp56-rVm;&|V$I=W;(x+MVsL+>SICG02f@nf3l7JhUWG?(qxmzC zE#jG0%P3Mf!KzxREUnL%vHPx-YDc#9AJq5wgwN?qr`=Bkl3Stw;ElGq4_^-p$vBVV zhICrcoG zeQKtZH^-1kw>yoQE?NTLhj|4ftE|dvv{p6F6-Wpl8`kny4jy*`eIf-=wa9=^6q%_t zL05gn)^Mb1kEEUaM)}PsgK**f@MU5f=6{kSl_S)?&J8#;eAdckgtLr0+8*-msRIU9 zK92g-T(uC+V_ut&#y`$1Uk1_&MOBk9aEppXvUx&P`m{pNODAX84VyE{OTgQAM&`|Z@^k+q@t37JSW<@d%#>=5;Wj9{o`o@ z;`p`4z|Ib~BdG%LZQIYff)d-3VF6;1e+O)y&Rm>GvV6h&@XIerQoh#nCWIA|2i;7+|jV*Gk|Au|uJcFdJI-gsBd{z=+gnWwxuCJ*K11ft5|3 zbTA@pe*TNQgA1VmPH7$BT-~W}Fn5Rc0u3kaw3>R7<~2@_0=K5Cv`H%@{8bPm*AaE` zrblZ`DjA&~7f5>0w}6+abPE`7+xYfXOspq1^Thvb5{?0P@w6xF@_aNvc7`uRyu_I*Xe3lsQk=*y9{Z~-wkpvGGcz9Z- z`@dN~5{aM3-7MUDQFO4TMx{g*x#ONl8NTMIh6=b!=qJ_*;i+^fZ2u`^nz%QJ2Rar% zT6dZ#huP$b**jLu+yVSzB*z;N&DyF3b-W4mKh2Clu3gsuYT6RM9fFB>XJi5TG$5PK{EM}|sgoLL$RO#bI zHWiy~GcBb|ihJ(l$0~l_%#ELYaK^=j=z_QiBU4mpWS#FCF95;{{FnEK^$br_3lqHN zg+GU;M+_Z!qNcW*>kCm@9_%x<3T2^8&o4E&{R`>X=i=fkOh+BuAm=EWJ_Rx*p$NBp z$25)rI8mnEgimH||Dql%Mg{H!IyzKiTm0r@M7*d!k%WRa#2T-UyC}v&FSu+XK80le z_2gd;4PCB0r~>+qXgqmb#AGg=5Xr*PbB$uHsY&+c^yWl8jeW5lD5H5h7`}F~MJx>Y zY&!Aq;>idb)um}hI*M+k$VFAO{1`^9BWt5?sVRK(5CW<8gx2(a4JDGfx-MmOn89D= z9X27DXsM$9AYH=VGgnkyy$EkqgzWK%iN>kHaQxWcq65TgnIWu9%e$-Ww{-9b*qbS= zw=TFUkzzN}qWhK0rIkxVcf-1x^JKa7SaGj&u4@b(4ULudLemRuDaUwyObpl}1(vf>C6D$(cCfgnwzbv@)dP!n#k&E*X?W zYWDKPta~sct5~L0zb*IN1PhMfK5p~}Z~?8HR_&A~BTrp|S3vI8jv7o*Kj1md+IkkR z0+a$#!VSlw-iVOj<-*0OcIdvmEb_hJHb*BF3xEe5sf`C~%ikDF_k2-%`|?OF$Bk@R z?~>*0;0)!iGQIpJwmE1`!fw-RP(;)NgLBa(&qN^}IbZztJq~|=ZiPprIWo8t?vx{N z*`+P5KOZ>HQ>jo)D|wa2O> ziGb{i0T|;m!eUBYvQy^KZ0h63(wTVOpP28{*G*Wm&HJU@#JunDdu<%$Fg>JGMOj0G zMuIp)TP`6O6rG{jfHpt3{^l2g0}SZBmZ!$eZ=msVDKzU~9d*2JBx4LvtV? z7|g8;TFuc1i~-y{4(;Zu9iu;p)Bwks7el7Aj;ukgtBZ>yBEe^&2T4Tfh;_{F+N~dC1V%doR|#5iI>9G~$pe>56!xyTXSmcVxPaR7w7vOM^Ut zyB4)05rA4P!3bP>IZD)6!wSeA9w_u-N!NS2u4+b_vlz$Z>BHN-_rNKh=4MDY@K^)t z6WK=V3QTZ?A1_r`E5p9)gpE^GI(QRqOkob>zvzluuu1UDQ|sxWje_p*J@Wdg|mX6RXe@QnKD3P z24-hMD~u(>Oup+pxkh$}0KutGZ`_qdPcMBz;cgv5=tvwxZ5eeoZ5hFs8+Gl#xB;pUtFv z-=(UZXgS)NMuc8K$c?8ag1G>&RsCdah-u%!X^Wk)d7vuO4&xL0xsDUH+8E1PF|kpt zPPfiS3W)DO{Y<>XFyE_1aMuUG!}!7L8oYi~4w#KsnM>u`0B4zu2Q&XVV8T`>+Tp~W z7+uqlDOo-a?iLjo^kmN6}%T$T`1G24=gpy=di5Z$dmUMzYcX z%(aiP1{x`VTHs`H1{bZt&3EuH^RhC_d!ANG%L#l=mv?F5PLY>d|_txLB{k|uz zI9RoX+KM23R#c>ZujsM|2|TFI^83)I{nTl?M^XlkJQ8vSw{~Ogvl*Q7&!Fhs6mwc8 z{!Ks3wZ|Mh8+JOvYNBnMW;>?SJMQJz6CGa)fH9iXE2CdbYZ0)HQ3K6kD&opmSHBV$ z$_0$ln=H>E3BCB6ji?0+0Ue~17HY@}%`u#&HN1@M{Ar@wN`V(^i1R)WEm_9?0iqBc z3?^6T@hV|S>9+Pgg~C<5oA@fCk5q8h)cbzXd~&A9qQU9Blv&qq+S6ZN52OgDimF5g z_=Ji=;{%GT(?$zRglM#BfbfUoG!h2{^-ZY~NoYUB!=hBg@YfpIrfJp;Jb zMqeDmF^ek{S=}ITrWUH!QzT*jf4ZiT&g7uTWj#@4fR0gx1g`VT7HSFfVjb-=KCum& ztxgFaLrqO#7~SB(sB6WZjT(P~UlEvY$h>18M_`5{9g=&ci{)z&uo;9zUvVJVw!e4R zM|dvZ{bNOQ@U9(9v2n+)+dhP9RK6O$+@FPe%5KweM68|f0tCw}z^qW8>(DM%{#{L^_;c4l2lCKr`;U&Mu7tx_dIpD0k1SuxQf)J_1b|($pjX%z zhjkiXjD2PU3B^Oe;f1lmFD7N9OL|s|w;X|AGZnWf+1+hbp-FHDy{#G|2w&)Dd@A); z_Xu&J3Nb69v@CHa6|OU$l%INXDzTL|v7?YEFpCXI=nH+WcE9yJC@Dp(lY6 z5VRa;n0m6WeB=Dj&04m6hnJhS3Oh%W#@~I>ofy&V3c)?MzdS`rZZBMqrzFizE`CG} z(S2Ucq=*#lyNaEOmj}XPE4>;sBr!2&i;kb)fI#0+C^24!6gg|>oUs(m(ZIat>M28S zP)|IeEEsrIj7=&mLkFkFvOedk8)|_IFsV*~S?on3cz}J-Pj*l#HMFCeulM5ZynmGGtl$-c%{c^6#%Ib+$*(;604Qu9 z7yqhN-p+7Bi>X8HffOMyn=bQc_NRfb>xpEbJYollz%&pt+!JyR>HCH*q{xEhNkdb$ zdJU8l^uK6IOE?!vgz{F4l^gb?XyskY<6(93>qahAx=ooQcEmEw60x_aO%xqB`f~`> zm_L+njOvtO-?df7qCFy8EoCrM0DR?{oG{uYTNU}r585tq3Pu}EGQUjH7oWs{?bGXG zv6&;>c<0Yg+j`w=0S8#~cWt9|2OuZd@vSo7q{}`TPtB~Vkew)C>Czubvrd94hF#(P z;I07$2byTqXoi9ROuiY|V+KAO82JtQQ%ZxAfr^LnQwX4*r^^kt18I!y0Wfm+^%kb1 zhfPhVw~Ux*4)9Z>S}U>HA#;vNTFmTpx|IhXl4;e*ScbSi%tzmWRh}{Sg$Lwq?aT!! zQ}DOthiRe%OnPr)E>166?V&l~cJ;yET<}skmbhxP{c{kry&rOs>@_0PL*S3k#eEy5jC8^}m6K8dgjQ!Luj ztrzU(hFC%Sb=bb;Q^Jo^4T2QmFK`|sj6x0L&I%U9vew8fg2S zjJe-OT7!8c=*7Ic!OEXSW33^U34GmhybiDt7PStngHok-VDJ96>hUcz4_5jp6IV@+ zr~#ym-fc4~BLGKLebbJILGDRwx1!b~t(E@- z{&gc%K(eM~lT@xa5xIrp#F$}=1S&{UV+A}6!b@dz; z>PX)k4QD?c!hwZ2z5Z88uU|ibPa9i?5aO={9E^FVCPa_BI58BND;Dm1b^0KLpK+VO zr-Gz=Y)j&i$D@qwj}9{E#6+H57#bKW)oYmQltE?yNP9&zDXio1>=$Y$45c6=85%`7 zFRP`SOVZg02WDg(&(lZ3^l+^#yjv^YNSmcI&lQFTg?irBH7<)6=t&fBzOU^mC+@`I zwX?Mh1EG8+w#AkKqQV$PLQocuF?e|pxzb{8bGx@yVbv9bstnlGF=4uHVPl8D32tdV zI6`Vb$NrIBJ$z8H8@9m>DyWq4T@!hp|F^fk+Ll^JijxfExw(cZX%7rej^`hAF~w@8 zHgp?!Eyn`J8!zeE1OrEAhn$Ef=T*vNxB#c1pq7&{> zGFHbd=i-R<*n(p6KGjLpqupP3l=NcOYCZ-{V6el0p>K7QR+laRC|TKsE^g1V2;*D!N5W% z8RnhCC*ge$j)U>$;Ts1LV;Z~tR}6Bb_u@LPG1vX)PyxQQAs`1Ogwa?fsjLD9CFD_>O0IIVzZz8g}N5+2S*0HH}lc-}o zRuQQ0m(m_m@-?U(o-hbB_2y+`NWE9-Mf|dsmszce*MBG2@j&{ii%>!f6Y=f-FqG?# zxnaD4)+H2a+Wm0nOyG}MN$$q+hfS=uSHr};*k9{pXF?CCBTVksxqoA{BZe7ZB~^jc zn3b3aQmNZ^EN*zL@zEG*B08PD!iYar}?`=G>XlaG^cjVr;S=VM*M0u6L44lsAm8 z0T_&bHoKU9(NjA~knl)VVz)qiF0_UkY->3?h1}I5HLhh_f`AG~C>S~bjx34kTj|+d zz=L(3?4CNU-N1@XoOBS^qU>LeR~YkKllAoKpz`CKl2Q7ukCaYIi8?CpC%TC#`UnC*elMg%L}1D7pNGlwzv|G6vC-^ceZ;w+hbRY?Xg_H!+hcn3 zv79l+$k5t&um=mucFNpJz(g8`o}%0IazPYSMx8E4cLV;aWJl7nGQW-qeJcNh%?-9SE~ zSW+E8xt>iFE@x_DD5@x)$#jf9>qk-ibTc$%gE;Zbj1BL~PKBy~DDlosuS}4~9e+?x z6-T5aG~ykF1?4XZZ-W6t{ohHiD=yq!AH z8h7>nv`O6Yx;yDe{5JY~3GeXA6mCD)0-U_nF{3dd?Gy#Nf<=?G_H($+{ia}w|2~hpdv8W2w6_a`gzbwAyXyd3Dd z9t?K&E(P+N|439^*CBt-0cy%9&~+6LN2dHCoq)Z26WD(E;zjcXtZ@0}Rt2A<7CDlZ zy1*UT7b!9#-Jx9`Prw}@b*PrBPoSL0r3mOTPH=wN zw#hTFjNx$pcq|PlV=Pi#bV&A-%Z;f-;28P7s$wh3q^oeJtE_9ApT|R;iXzD`LsK-d zrsvm9#j!k~9_pw1a;>(wsUxK?)68vCa$kUVte+SdkpM`pG1>)JYV(wWTOZ=g->(%8 z`KNto2`w4$t#Ss_7hfDa76fk!$~}3C|;Cp><(D-yC$9;lg?N5kQDz6xgy_tzbfWay2Y>x*Y<>C8PETf}Fmj zui>BLvBC@qzz&TEB>S}PN{Dy}`TALmivXK#G?eX%M_u(BU)LvcI@B!>ch{9BvNEgg z*FQ9XH*YBKu3gtc?#$wMl$Ls!HWu@yR*wj)3elYC^u-w)koveLGM2j#OfG`Z_2kxp zD;fAEw5}u-ad;x2XQ%`-=~XTs>&pR6>)5PMTyVxZU7WtTmS8$pM_njqs+}%Bz7Vn; z3AIXanRMWfO>2GA1&9d5ECI1!#Q_x>!=V?zumX`US6=P!rFMGTB1gg@IA5bV#lA}8 z@i})9Q1tNLz&Kgkxi#+w3t^n9 z*sVvq&dx6LW&Z?uDFeRIsLKvsarHeAV&}yEr|9W^#l}fnk^@|+%qedjtAdS0U+Z3D z9HBI)oAij}Z@m|>qSRsv!)7(UldDibtT?%Exgo28yuQ*YumS32w{>E-2WyGNFEn*% zq!0$mrg!PPa1w_1G}K|)0W8gadW~4!{kyKgYGCjhn=nYPMs5=Vw$|WH)BL9J!--X8 ztl;OpFNB-adaM#Zcjg<%W;#$iqj@8RAv$=eU(nwt;3@f|=4XPVE$6~Xwx(4;2P}>a zyBV9JhX$ib#NnX=YVw%J>kGeKBj1FgT#cE8$&>*!(%%m#*l!{se_;+~VZv*5dpUgw zR9~)YRW4!OBa2$;g1|G((p;pC2Fy!x*5uYkY8;!Z$p_N`OLPiy(^wLXLfzsd_BX zlOq`!jU#{(JXe+P^2!b(Btsv zAGG^1HnM}|A>o{m?gbe@E{^&*lo~+wbL-v|XzP>c6V|zY!Hy&>W3?i;tBw92}hg7gNE)!ph3}zgreU#{XRs zvaoWobN*jyMb>5u`^}Afep@HHyE`3xKh(`lNgHa|!OhKvu%kPbI<9u)XWEVL>^cAG zPVcT^@KJ{KMdL}LJLwW?CH9mtdaRkCr9?aq3lB^dkf4&(_Iy9;(9B3Re3Mfvhbyo{ zU0uB+k&=o`8<5<#4X#jPshuD&P;C~Q;P4h4zy@Z;(Bx2}5PS?sND$*LAFOW*Cm+;> zW%@P@V>_59Hv(kTiMucM%;Go42S(2RGo}Fu&TAkl7{o_+#n~V0=j_Cef z7411iWmW%ahf)6m$D1n|15@&N1%|K#aZ4cf!CKf_*+V%rfm(q44**U;vA=ZzS{hR7 z8UPt}6)jbN4SE)^V-0sFCr6k6$wfj#Q%i;kAStG-DFpy(GXZ3@G&Fzz*93yV`CBmo zlr_QQzvF-vf14{wX^Ls;sYEh_{R{#K= zwVRuh04uAfrzeY*yQ>?Eql*=bll@=$XFs zJNP{-07V;fAjlQ?+eq5+??DGJm0%;V-0k0qfr)VY?bH5mb$}}n_#a`cOc&AU#W{bf-5ty z_w_e__5AM{GX=T3`uu~N|18_w5#(y)>gM{lMA%&^x$=B;Rv$#23P~ z9o@h!LHGY>rTtedX?J^jWm5+r-T&hBzZFd#Z0x=NQ}w@8bb!CJrBilvaWJ+2uQ3}} zX&Wz~g{qC4x%J=F{wls&k2!TXQR@9hh~%+AI0Ut{35 zG`9l*U0nfOf13fpMEqCAVD^9K3t&}$l2B67P-gt!ZS$9&6v*7s!Ukjo;Na!~n7X)_ zdLyxcdx3+S8{o?hZfpyn*I&&7U}XV0x`9mqPVR30082*~q~8xG z{~%rftHd9~2Vj-_gZKfgQvXK0Yyej2KZqT`D)R?%0$An#AT9u_{2v64r}zhdf#WIt zLEw1Ge-JpH%D)jGIG*Ys1dgZn2XO#c)&C%Hbd5g<99{Dd0@tqf2Z5vO{2TFuk?9`< z&c*ECh@A_Zj2XD~z^m@x8eoz6zY#ZB-`vq2Jo*2UaB=;XI5_rVjt`0)I@{KFyG#OfaqT!;0as=y3ddplVJLI2PI%WVDu!G+lV1A=+A`v(LQW&aNd zPWKrYIu#QDz@{YLIU*T0tipKjs)Ep>DQ{zoRi zH-*2&|CtIqJDA~r@Xrpm{u7Y?B4qy5IiY9f06@x@&UU1 z9qK>#JJsK3{$Ga~+n){ae=b9RVGTDIM?0X7jRp83_zx8&Q#ThIuXk+VlZYKG2mk%+ zli_~^p#F1+{=-^a+|kRInG3uMm^t{t`z9B-bZ{f_`u~Tm`QP_{lD|$t@J{_N{QFV> z00O;$=141xj^=`4wrMR9_l6gCnK#`*0wxBGU zB1c780mFcg!Jrad>M&gUm(BK+>ZvOWHPKzu0Hpw8G%2yMPueV6Az4bxK@~le^hffa z3iL|3X0tjHJIDZkT4To&{9V2Gu^f}Hn7>jf4Jta;^I<)U=h<6vTCf@apGf42gFtw=1dAA@W$lfocepQ_aI}6MV_MR_Ob--u%+nkoi|stj^N)#xppIy zK#&GfkyKd80BDm9knlV+2bJ(YLcgCvgG?-P?Qst-keil&pv?_ECTzx>S$^Q>y!6u( z)m#fnlR8}+I83vn63B3n@lnr;u<8_P^%6q%6#U2_1xU!sKap>EP~w}&V!C#}+j?#| z)OXMuLweakxNBZ9LHLkD2Fg0=Wq}$ijCek0l}C~iNJR}AffR34*&@DWwZbrh##AC8 zwdGHM*5|o@sQMv&7*gY~PG(M}*F|dc7NPk&!~uC#$+aF||Hu{( zC*G0?ICK@G6s511V|5jQ*H9ivCM&I9XOpUJGtoW@yT6^Wg(_GTks@%(` z?57lLKkkQcSMh|nDJ2L(Ae@B?4d$z|Rb3JlzBA385sx z^W&g@8j<(+A0oKIG{(!KG76S$Y@_;!QU>|8J@r(toWSZ3#kFlD{JJ;+89JtY9Arex z`IC^bchE{h>xT9{Ad(C`Hjb*0psS~UB(gVvBse&K$W<1y)tYfNkdKKP-MlY}b3rNJWss0B zVW6LzNqb`aVTFi|Z{x~FAulIEWN|toMu!6-9K>?1LOH_Op9difPZSFaLZX?YC#vMG zY95>+VT}M2=}iDBB_t+41%A%1;41W=B&2GyW{Yk5OYKhXDAS9-RMFNdsRyO+ZB6KZ z@-ZBkON5Kz2bLt|Mh8&4H#md7NaT$195U#;?1<|fd6?7lioTI~K?9JQu*DH>7ACO1 zY#`Za2c-fnKC_A5{BQxmoaaDxJy5)!YkDz&JQq^XY72A?B{E>JX~|-Lgw4D zT>CsUgs#HYU7dQxZZ4NM(%@iWyXz!qozz15wy9DqGK}HJl^}q%{mWEG&qhDB&!pAZ zeo{QtEUOUO5ZhE96MD9?$!@Wv+mTgJF~{Xi{oN}(8T3pi?ND)I#Z6BKRxlNRN}pu_ z%Tj9DVpsN2JfrhU1O@icC!}tsIFzNq1O#)NIYVK6gtx*WM_t-c5}QQUdbzB^H!Q_; zjqe}n4$(0kOw91!SmTt(D>i-n|vy{qgB z#5Ll+So{oH{xySzX`hwG@wqla2I&0__+h9a=SAd<<;IsTe}jGo#rJ&m0H^AL*56ym zO4;Pf|5MaV|Ge!rn*_}*1WPC$q6@rA%ROxPu)zY^8f8-jkK|Ts+ZaP)B4rSybCa7` zPNLGc%?F;dJ3YBQQK~I}?s@4C--p?FE}azcC@H+Vu#6juAf}oHZz)*lIVpztU8V@d z^KNfQrJXXGanG=uBp@GE5(X;wCIr>|U$FW2h9+aP)NY6&J3^CEKliAXcv{#icljcJ zH&sChe1C>hw-bf-LyqHQXV(`k>h%|E?y1n3u59$QNWiD)L#|tY`6TH`MVV;C=79jS z?y2r4)ZPgUn4b6{C+DIIfo@r}^*ITrTk@Vb+ibf>82SSlM{(yA;O;$8M8=DHKI(gJU{LtgdAa-8Y z?V96oSBoFZb#eF-bVco`$qy8&z;7{x{Tjy}LrAFCtnLg%?98ZPW+Qw#s4nia9WT)) zKQTJs(D%)fZ35v-s0cRL`-11H)6WOH5u}_q?gQ{kNqeLr<++)avZ0@vWN`c(yoV`x5ul5kM#n0`clvSrnCR5azQ78Js6_AAZm6=WUnr>5vR5#kbmR@PVv+~J+D$&Uww7$7~BP^4qW zTNFJqj6HIW4!L?0$}L+DBH-8sGhSC?&pYL2Jm;EZ9efA|- zh4mD5A($xkwWABe2sx#?47wr*+EPSNqrNCms^xU?fUAJQUd06Ba|HzV+>d2eOk-+& z`$FS?J)>A{{HIL4uYn^~*f&@s524rqnkPQe*ho^;RBcBzIgA-+z*zm%LhecF^*R%A zo2kN`x&jWZAc7q<^9FI&%BEpdbvhuBie?g}EA77H+Wsom=`nrqEcAAux{f5tk=%ZM zJFeU}Q^!tH8KSQ~JJ%hXCo1k~K_(@RcKg?VL-31ckG;;17)BOpbOe)l1HwmlV(H;D z#?{?E$*s=m*QvVi^?pBQuAvye*Bg<#FBg7Lj;N1N~5$aExC<3Goim7jC_WoyNydJlqj1RE(sGb<>9O~3t5)H&nVtg!VQyTRV|Kxl&UjO z$W|b6MSzn$3s-(tNiSr~^C)lE=lUo);M>+m3a$+xfN`d+TG8~#`faltQEGhjn+MM; zih9l+t<@Q01ZtLVdfxqt()m?mU5+*B#{>S!Or1c{*mFTy7||5*K^{bIstV=Di|Ix0 zMAw{`gn^Xw0uIktGR_r#?14;w^uw0-W7+&Ps28!TbshSmDGpl5UhDuw1Aitg^uRWCL$^E%Y%J~h4nkC3K^A-4( zblr?rbgBpl1gmXUiopjhWe`L)3J2|+nkf!+vuTp!-BkQr1=aR zPsO*Qn2A~vy@~LY(%H0s*1Ijp`!XnW*&s69dset@q&Z-3gvFzF+?lUsH|j^cUV84G zie)*wfyyt|hSRojh$_wU`Sq2~)u#Ixd!{D1{8Yf-nET^3UF%24tNY;gJHCEyhWlx{ zz*LnsDkiQyU4=T24`EDi^MRwJ3cWIe-;a4k!T z5q#Y__;w>aYA24WwL=Nl9mDr)t@jr+eg1%y++*V{l`(LN z4&!b_A>>`nlEs2N0kpluK7ydA6V7H259{F!=cI;;*Tbed(m{~av>V>}f;PXdwe;*7 zG7>KQ4V7}D6Wu=Y&PssQn+>8|d|;qmeoq2+>mQ+4wX2+E~xEu4hBuIdvC zX(&N!40kYpEq#C%o|5WfS5!9O-;dm65O_E*%aqwWZ8EU?-;tXgnQ4U-qZ2Cp;v_^D zev4FBmhv;!(+%T|>b9oI2_V;yuk>M@q^{86#eOJ%EbpvTL9CcKnxF0QB|NdN3V|Xm ze|}@+y)q6mObK@zDNIY{vG+yYfymr|rV`r#7w=TI$kjqk5XGB#=TK`}3gXBtIQ6C6 z^-vA>Gl4l@_C-o8R8WyBpP6HaTAOHg$wL;4w$TBEbEVUOZtJFSP$EmZ`XpbbgI^~` ztl4LO@+}#FJv_^m6D|&+zC;-T&2n4z(Cn7D6YT=;`}8^fF<5_LjaVB2IFPpmP+aD4he0-ZA`LiaZ2rek6ehh< zFW%8edUUsw(stde!4cYTy>+-Pxp;#=bYm>dnsJ&VSda>W8 zPd{PHwcUN8eDm2QxWmt#2B~F@zZ0YXYDSLD$U&0DKUxP)CQ9<9T*#7u$pDdvjmPz;D2SNO#-hLY3kdwRP*$(BS~72j|hV`G3f z1jt1XsWXmrhPD!OT`Z zYHbTCOBUS2z$WKheX0>`L!&t+xzt@Z@zt}to;YzpcZ>7R3_`oqD~&PJ+kC<$R;t@B z$*pGn#}(O&5*PVjP^<@L>vY`7S*B?R_*$$7($0L-0(k^aC5@MVJ`&tCR-n|X7BBs69>|{Ug zh@ASPs^<8%5>j@hTy?KJwu%xAWG~wUt-&kA**gIB^zD+G5c%FtjfwM%z~q*9g!|Fx z!~`bhpR-O5d26SCeB~5;+-{_4 zlEDr9*6=hms)mY(Kecvj_mKzPTRoSTYDH+u$>o=`a+-`>u_y*cU?D6;IufgkgH`i^ ziB{Pr)+_Zr$gCXw9N7IOr$1Zl@pse}GnZ5L~zEQP*$4j|3zBW#M+d2+xKnya%&w&2VopG z94Ps)-xD4>3qF^Syd7c!H|_O2vnMzF)=6L42+hg&z7U|;fR1@2=1vT!$fo0`C;De? zL+jqCZr*}_y}Xtl=OSNg^PFCZz^ThoT{6fZw29Qw=E1~d_#q?qyfUBA>|g3!mUkaX zxs`(MAa4X*3YmR8xuHjmH6zKL+D&$iwmb@!h-+I(Y6P2YJbxa}CURdS*&}u{Ffk~> z@X%95GDvx9$_XZ9&mah%la;BYdr|=fKpo_4v$XktZ-Pl>N@`=^X4LY6LNQD-- zLVNrkN`MHh$)Ae3s7L*#bgmuTJp(NT>sFJAr07y5RNGGw120LiryW=DV`4{_uE0p24cAqP4Mo{yeBZ-;k%v;KoF;3$7N^Kqkx3S*_3Euf=e!O z9cHy%H|hb#lT$Q5=X}-6Q7ocafw*Oo?4+}jkAD1lLev}{%XVkTxKYD<9LLV~Wzeoc z&SBw=U?C(I$yH31?vxE6Nt8(LlYXQKe0V|2ib(7s*kI_|b1i zh`$Bm6qzUSIZyvrQFTXLi=p+2+k#&)tQo5ygs6)hS>H2$IiW_cNf{Z=IR{(N)!MBO zp||Ara@W@hQ*_dXxkzptL<-aLk!u$xqPM{|8lhG$%C;V6a=C?1170n78YC!x&0Wn- zIcr893GY@#VFmiE8HGv*UlJ$7%IhvFIMQTKl9F`AY`JEBsfaN-Lo(}`nhX^%AdDM* zCpF))w0P-wi7Wh}WNzSiP>oveIp{9^iXM=lGTC}TV-0fW*<;aW4&pk#FHoZ*pR)?U z=9HErz0Wqfo77Yv!t)XP_C+**kF|Xwf~fco0a@c*8-wJelj~_I$BVV})KA@9dGEWB zxSAM3>RGb(0rkU&B&-m?^#Rv0^Zwn0IQ2=&yo3$)x~A1hIfpdrxUrwMeg&%bQ3Z#+ zP8U9k>$KgICdG`t~6T54O0;y2Hf{MwDIY^-EDg*UUQI_C$7WqEu5u`n4R;%vScJyexm@*skaTz?%A!ICa7lPS&SzJ@k`7mgMo0N9(KQ-IWZwpD&7&+; z3^Qb0sx4F9IdG0gbvtc{UGL{mX!A(y_#d%$$-l{YSk&s`L$6=()g}bc}FjJKskn|wP#Rimv_RFQ1J^XPdupHM!d&nhvVUVH<_r0@ErN2T} zLDoKAh{lL3Wx?`R_8{qVh`zxy-b&T`R&G$6oK|)_^G(Cx*NNgM_M2_oZG71-skkxv z<*NKLPmy2!?d{Ef!hS2PB4&m>gnCXHfr#Ga9x5;U#uGIHG5|+a6`YME(oX^k{67m) zI;P78q+$A@LrLURc}aGe`sjWY`84GpfM(e6-~=<4K1V)~0prBd^t6%GOad(1t?v$> z=14SkF^KUZkw!$xNcA_Fm5vdZAhM+vUyY=(Wp!H6gLyk>XStCKu9vxw6$(9{T)sw52}XYFrehcl)DH z!_&%{lQ}_(u#i~-A(6RjDZ+9CG-=TOL2%z1s*s0&v$&d~*wUe}AJCY1X1e?dWhV<< ze?r^>XU063Ab%zqe9Zt@L{K%f=O9KHD@V}C(+%^#BAMCiZ4QVLE>)B!>i_!joGRaT zu3!;j6!MaDKr?(Dw(Y(2VX2`f8}nyL3T z^JO!CDOj@qOEmr~nh(6bmP+mu(Kf2d(*s1wDHAZfY3;DEY*y0;R^kaJ0Kc>7?lxpY zAi?=#kiZr*k!?J+VH`cB2a$rX%SFFkUIGGj{s*D2*OOr`eK%FirOfrelDrQ|v$qrt zcu+k&U!IT$sf{6_759znHVEBh)o8ZX zBU%$0-uBh8@UT6RW|2P%zE(IO0s8oezR4cglDQC;tgmZjZ%Dui4SN`q21hZuOh^JbP_T-NwUhc~^y(@BR7NpjR^z3qr^b7^^v2 zTB`65>WsNE^UY`0-K$S%k?-wGjm7xbsR)5KvIH)(=7D~qa5(r=9}i(0SBLlT5tRzn zlW(Zez4bZ*cVOR=P2*&jL3ra=4<|=|S^o^cyS`VDQ9}cDiJ#z^rE*);mo}jp-d)8= zyfrBPZflgn2cv9U_D#g9u-g&Dx;yjH_O6~cW_w>r zJ?bj@{YDqLMc{zMIqwkry+Y>{&b$`o<%;W@1U`^Sb8t6!?27-A=RE@Dg-zQ@3i`_%8}~+J*?35Tao0mKU?--@ zQusM@{o2SHc;%8HGU-|}5{QW${c>!=$$<}8LOMAWZV3a~8n$oaUzR3tX7sIJuT1cp zBOx!>xipyZLj;OvLw&XIR1c%*zUg|@!C&O`;t>R!EDvFF9=9?4;8kgV??RC~Nn0+K z!pH2ofDYy(71`)~+sGkbs8UiE&koo=PHl|+GUR$+&rjWG=sp>? zGDR{+ZcUqowZ)H}Ain9bAgudhRUbfxEWFNPd^Yd83ER_efq|0D)I647MOX2?}OZ=zK}Cb#76cr@4o4wEj3a6Bv6DM*bz^d6F35+RfU&W~FvJNO+Au+jTFq z!%~{V6t5Ez$53fn*gt(pcYNA4wY!ZF#ro#uF|Q3hPpMOXF0^WMAlolgyR|y)MDN(> zyxrnfpF6`V=&qR9^D3xyhD%e_^~iQYoXJS)`}73IL#`;GN5Hf)N7DZ1g5ovMuiNdg zI>?4D`s93VGd)l6`172L@L9$#aGfj;L`;@^eVKaW`{AwX$7Q2jnr~=TG1LAS-wE|) z1r^!o{`IAQBy@n|Iup&gT|=P^O6W?$azxYDQyVZyP0nc2FKum#OLrFVU}5TKC6 zl%BRYh$3p%ntXIU4u+V?wTzygad53)rg(P&H>JttWHDO$Yv7~41_Eb(Vy}oH#aAk3 z=-p+bPQmSx`IFo7=dHu&IEXO80+T`+YZj=cjg7;9XoOe2g!oWY(nub1ue5^M584dL z>NKw*{91!G15)|HFi>Qkfc|oSbtd?_dzZD;oK`0iOo}4Zd1ZTYpOIbi(_&uPlQ4u> z#|svuSR4QDZpXBBsE*~+1qcL<`llqFP5R=ZkR^Tcy9&N*>Uzk zu8sA7Hgo6%nP=z9Tjg$U;G^F$P1Vb_&p4Ivu%cm=2eoBYhMM)eFBx$=actb!_P7?C zp6c|eb3a*4m_(z16^>`0wkD!Hv;d=;S!eXL^|wLM`bP*!4DVtShob)P(} zm>8aa(O|oYCVaFU6C(#zTQb|t01{EoXJ6@mUS;2i1Do8lRA&{IFjv2*BK52xvoyOR zFt)mN3wZwgRBM2IUfTAdjw&rpM6#pR+1xY%Cxn9y4&jq(VaBzWYmQ%)LZ2+@Op4_NVZR7Ikgv8|>8ik#Aa zlcone>W@8~kKen}8bOVtn`EY9nW=EvR_;Aj>20@EFnDlRZ3);2%q zuCB8pLEiVS6Qa>~aPm8T)r(V?(_*53c?K%Ho#-Na*{S=kXwg`(d_{O{c z7nc6lN{w*fmSskbp|yLaI-;GoF(WJ=LJwC#zK*vZxqUtlc?}BAnT&Wem8L|0vb>`V zz2iJa??WTwM4wuZ=;Avq3-j9-(!`Y@Y1br`0Tiqa{q_`$=}zl5;N@PY-{l0vYMdM? z=cDI`5f*w^pV5T|?Q;E8VzR zv}UcIxn^R3W0i<#N$X6IH;dSR`@C?TH?x^s(JLx=6}`cJ{7JfGs@P-+#plx%5|4@B z;C{W|tTc(g$b0|F#8FTfr;(E^b=4ei7bnb%g1JIUF*tIHF;GvDYG++8Ts716uIa6* zYWiZo#*;>h9F2dOj?7WWxjseVA2O}7tqYJQT!;!Bh<|jq7WLEr5p2Ag#&DIcW4wt#SAO;7c;;zDbUvuVrZ5I<3 zTy21F9Mk2+1UIg-+O@@J3-P$wCAL^jdaw9es;j~ssSVVH_2hw0q>v{k1PjLhYqoE@h-eRymoh=I4fx|oP~HE_F6 zDvg9jz;~%PNo;&%LNFS8rQ!q~Z1BIRy9K`JLh1Pi*ugX~C$>w{$b~WLZTF>f1Wni< zHYMAQvia>KWV5X=`d7W1d@kHq>J^`tT)LY;iwX^ShHI?;UtRCcKT!nXV$BO&W(?3s ziE^W4i^1Mm?No?h3@*WOW>tDb*ncoDMiA>0!9J$*mj~4!fYZiZ1oWZh#*doJM$!uSG9U_!DqY=>P)1j*o^$uQp^Ny_ zK7<1hs{4TtT)`=_bMl6md>OVu9O;mz(b8RY{0E5LgoT?czwJk1GFUU2L;oq=&dovF z3xN~pd!g`uh6N`Mto!0Aq?l+A{}1`fL$K+Zk!JmpA%ytaopJdNXAfem42iyJ<$%ag z-1+x2+XiE#c<%gJKXThx?56P|i7{mw&3Z)}Go^!W3W>LEoaL4}CZ{BW*G(rY-8>3* zexUi$zMD_I7lza}x)J7!e$;TG_3?~W89gH%`23K65||TMHZ_+o#7taDx34;SD`-Jv zo%cg9mxf(|%~I|ecd0q?ojPA2%!-qESvQ_u^g zu1OG?NgS-4-GOOVjLpplBEF+GXl6p`LOnVX`h_Y)#FKiLbv2eSj`9Yd8^v&k)&Ab> zL%c@0$pCtj{$NwyPzLSK@m~`x+h5Jwkir^&9bMVUly-$C+tzs`9UGL)Z%iox5Nqn9_5glQWZ9>KOIDS3sC1&Go~Tu6j0uO z)*;beJ~1Y%`XO2RRCdmerVMR&MiFGa3=N@_i( z<9Axsz_t}jQQL^pmykqgS|VP>*LjV9;D85Ho*Y$ch9u%VJrAi-xo*w#{#JnQrd9Up z+(x|16Gdj0!pGK_iS@1q>|ajIa{-lDbtkniI*_AM-kTHv4@%oQ2r*|6%LfO6(Ax~s z^Y8FA3TSDEI-gb>c6qqNp)5I=H2WkF64r=<{laZ9ieLD$h<;+9jJ+~l_ZU2XbmF+5 zijD05LS+eZ)*?v#)%)%KUiT&B-52HJ`Y>mQEOwqM7C%O=c@j<*GQ%``&Z7SI1wIw0 z%CGmg$|Dx~tLN{m-L#7P9Lrx)@PmJ@gc`;|A$E%YUsa^jzIL9M`P7|cHHF>zTJ<15sIcL2bg{0 zL_vEoSL+FxCgiK?>WClj&O;1D!jVCHu-(G(3)AaWbnqwY5a{J0_=k&CGc>DV|FZjw0p69TE9%A}tn3Tn^UJ!cQDkKq0s3dz_W3g6*>x>poltc;c7F=b#` zsBNAh*IuF*`JL{nbGG&LB@s1u$4_^{v;ll#>L`iYWRzFSnK(P0o+g&cg6sZncpDZoz7Bdls_xaM86 zz${Ds>|1W+Op%Hh*Xw3&j&Z|XW2&*T{Q(x|J+tD}(d?1|b z10=fX#++Tz@)X5Y)~7h1z>{6SF=FNjSfYoz#W+~N(G&82)@%)}tE4{y97k{jx$@76 z60b~ElXNQGI8|fYsH%bibbG`VJlT&ylsPX&Q(BnNQV=>jz7N!kIW;UmfoEhiwTPRP zOsCJt!nT#~U_@7YSL{5qBM=Xb6s8U(2sIc5Miv?8ar09$fOlQ}@ywMkZa7d?X4QRi z-@MD=d*#i4YddaS+XSM%_Si9L0ik@1?8U#*)e=ajNHSEfHEq_Kip`tMyePe^iJymw zEjYqfmf-$CydS5C`b9C)+}9&u*FjhQ^4W@We9U#CY6HuWlDNDYy#Vql^;dGK+ZVc3 z;MXYcekmdQvKSq_B@}qk|30O0z2&PW_i}O9pEP`bJeA|2L51DqjqfB&0V)1QO&bu` z4>-(aG!gzs!q}tKa-T&692b#XBf{)cAP!LS_P231ECTY4bL~_3l@fx`_ z$B%eAWu}?tHSmsexyp~BOGZ?!8J7+ig4b1AcGOX`5ICQ$NWUjuG#iuzm0o=La_#QD zA&k0ztN&#Zx6uNU2X$ty^zH*8wHGq3tSN<~5N+P_Z3UUErDtAV^G%@|VsY)PW#V;Q0<`TC#q}A0ef}z4o$>7o zTZXTU0uA1d_eF#^S{w_j&eer?Kl>0X5ZpL_Bra;zUg1Y9TZkbEpgB(`-iaKE5>~y) zqOI&v!Wc^x>Xzo4S>>vSBhfR!VKOdpfIctr$>(GuW{8Khf0Q*i6q?866#!|WdV0?w zS|yzLM99{t zp9>LC_0l4pdkil>Q_%o5IkDJRmFOdrydB4@WLMN=|nG?7LuuW}$X4}eO z6;3>URD))MJ(#D)a;Ux}q9aU_isHl=Uuk;cmhOZSy^?*ZDMI6GU8i1(V<_2Vjv?s2 zFH9Jt6yxx}6P4k!mHK`%vQ3=_RkCe`)Y(EL>`$M{qG2G0ahnVMHGC7iQ@|5{1Npl4 zQf6F!Q-YgZiaxzmc)B8m8a{V_SseKHFUuy|_?>rYqNw-W)u;GKW;caeVRTn?Twst4 zsrxJtBppT8V;lbU`=LcB=#x{z%Y32bWzOv#vG`YFN%~@o%J4w4H=KU%2h1Ia-tW$$ z;_ee?EV-a#vXDBJiADL;d$Ig#sCRs3Jq_PH`-AzmNm82jy*vT3U^*BBvA#><24nc zy{!-DU1J5nerf8>km>M%{+bw*rA7pk*-K}cW}*5F!@c?4Y2auK@N5fZgMVbn6s>ynjIM!Erxg{SaesQt0ob^6nez)?73x7Jx zQH^x=+DWkI)Z=M?j&?-dJrBA_x}H|)T+oT(QcL}KJk3@g%SfCQ%hWb{)0nO)hs6?K zH{+~V|JJ#5>gGn6SUjM%@tsYP)fv{CuT%8T!NMEKL>gn9@dqw;>DNsg42*KSdz_*< zv?eMdVMM#K;oX9jF}I6eD~YBy{32oIsA{#ru<{OLmeOv2u;NUOi~#AO-2*RT zeqPw~s!7|&H3docO{T1|$3=x8B4OW!&T=NGhQS@D?Z&+O zQZFqyl~S;OvrUcXmUN!tcs!3MdvPJ<2P?gg_7zdaVNIch16t zM&H?NB+pCt?uyNpqabQ<{eG?P|J)XC{`pH@%c(8%X2DUPaET|?;caiwNKx8+s4H=&w34Ik;aCa#=?k#lUB^2CjM!OlZ;-6X= zHr7k-ovlwpxgax1SqmNEPimM%_-B(8e(m$UrRi6!Ic%)wZZx|B=4SdG0$iAXv@hq8?5nk%R8lTNx~Y+d|HqTWkTTn( z!G^fAdufROZ4c3}Y`yiZm5140D2c7~QD7J@=O&c6E3tQe8Pn6zj$jF#+Gqe4h z$C#TL+DqeN)~|xT%f|74a-yw}z3Q(fN_r8ah=&dcD>BHLAgfsdTJA<` z@fx|CJNIu56?^2cO^tZu(Y$Hw2wny_5L+vtwE`rsg>X!xH5yOsT;E5tYkAxBTgA5V z7)k&4uJ=vfIf3b4a5RldF&0{>z8M~~2)+n{BJV$^CA7Yqv0mo&X2UqWv4By&F?_c zwF$OYC0S<0drX>Xdpo0l$Wy{V_|G$m@}}b|vKZL)jWVlWqqFM<^U*k;$V`a`Q#Sn= z1jBVj4zTo)-KBY>fkT557%6AZ>)kaXeQc2f1&j2POl38;No)0SSQtyRTTuHyx_PgY z5EkfVufH}7G3~{^u<3B_dQ5S7zDit^uKsusFy&y%O;TXRLd+C@L9EjD5P;-Mhl4kZ zr|^Wjj}-5R7Fe%kM9+7+-c`HTfcRPR71D2%E_T>T!|%!6kN|*>BybTq%!rxw{UVn+ z&C@x@0ps9Zw4%&QD%lx>$x|!zA2gU(8eSUv4nxK>r;1$OAE~ms^l#bTqUi>;%I17-tOHu>#Ff8 zf1jH4w=)W>T5x+`u$X<}kg8jHFrWh*%fCkE+1ZtRx3|I%ry z+$0}NLvckod1gLEIV35hUZl#!;As#mIn0|D2KK$D&1Z#xw4JKvf3cPGa`uA`_{787 z$UL4FLRLOuShZjq^FKNk=KK!;;H0p}_5KAFDstIb-re5~Yzb z9(n3JV^g`S8QGX9e=8pnm^V!y_s;gWqGaW+MWJ%a>1mL-;%jGc@?{_W^xRx{^(3Bp@Tkq3zHovAa7k@%a;g8} zNlDgw+a^q=v=F&Al?c5Z-EG%HgF3}$QhiJ`a`yk&x~6SWe-vFeZQHhO+qSi)ZQHhO z+qP}nwsH5%dAr}xjE<&FlNUoyH1ye3eEKwYsso+)Vs1mt8pu?DbL)LP$1!D!sPb|$ zv;)KHlz2ZHT@t|Nkc={Z>LgaeNWfEayI0)(y5u;2|t3g>C~6lMPTUpO2i^? zDqZqu{;`;m=5<8V=^4zv+7tg=H!?Sd#1ymbbjX~PD^r77-}M`gpWr{pCrD^X1)xRY zDBln7%9_7aK&CyNF)*fl!!$zv(-TD$idU0|gZ-NJf19XjH%S-Lb#9MmQHkAS4Hmvp z?bC+X>9F>GNtMq_Pmk(pea#BJ9E5otY8%yN@)i` zIf)dnfAn-0lxif8f9aS@RvA8onRCM?R@*ewk0eV#nqk}udvbCbPtD~H=4Z3!^b1cT zb4M^OwU$-{y&nYtBYQ|nmE%kUBg{4r@Bji7n~v}IZq|uSr6a)#%4q&&%qo@ia*O`N zlAl#@59Q66is-j-zV)}`y`w9LUlE7T*9m$ue~i7b;)$o!RN%Q>v9WD#SQ6myTh6yq zv*XgK(F68N;NY2=0t*g#IkEkeBu*UbE`P$zex)fQ%^dm+WJ*{z@@b*slZYvgn8lX< z0Vv$^OJmfj90DEw+s0<+hO=@AtwOC%==2C*;EwF)aJA?gO#y-HOAT(^=lKC&=6>m* ze><9051$3z+MLgYP`uZeXuRIe(Lzz!NWE8ZE3eGxNnQvnG^jPpsVs;x&{bNyRQ0Mt zm#>pFwFhZCtHy(U=Q{8x9ME9*V>kS1bpMv&%Qaw>%N!0q2&ty4dCeUGV(^TtCzjRb z$|SGaa_N=brw1FTz}BL9_}CmUxLRhte=y~Nwi|3NADv6UsUzRIB-a-L~Y zm4@y+u`C?SVv8iH&; -zi{euy?p*kN3#ClIML&CT5TC8pcpT0n3bIM_mNR#a_V6jo>%=3!-1e93z|ac!)~sj|6P+krQ{T9gVIzn*e`{V^J6fVyqesk_ z+X4|~;v7YC-b4?i-H5yM6hHGFUvZQM4=%Ab4X zHDtn)#~T`8Zz2}sF9!Wo2B4^9Aq34ucfC0K4aQrg00b%svD=hVn>9Y8&8Um*l%&~+ z49=ZDJBtJD8xkzowUKXHOo9`-NroQI#gX4~FU5aUDpW(Ne~Qa*rh@_Y4Tg>?6au>E zj#|#T<5f4!KlWNVq*s-4MWkn9#XWL#a_-noyx}&Q`yfx6Ap5JVBs7dg$Wg&MN_(`6 zBK3~j*b5Fo*BhZyjvzT+O-XOUN#=(ZowO=G@xESE4IJ|}U(Ls^aqyeYFRyigSZOd} z^TcT+f2w6UODPxmfRwb-DkJk_)~|ejFmc#Bn*%7!u8PZ#5X3atPoqYWCfHq9 zLYr)ZUbscdp3_$i0Yxs3QyQ`L2{Bb3qXlO|(_Y<)$2%y$fj$YPX>XM*M+7bbjWfP{ z!isJc-|u8d6oB7SCtPJ-(a^DqZDdLRt3TvYylx_ zY0z?Bf8bl&;QxBB#4!t)oR6p`uow~#A}>7#`pWVqt0YKL=p6PrKk{UMa1Ed}we1`w z^ifqjR3%_yr_ve($a3lwgFvMMF+i#+yO$J(dD?>=J;t~7s08r6+z9whRv=Bwe)Pm> z0W89@4oKqM#NTJMX4tHgw*M2oT!uf$MHg5ge}z=dwsZw+WmE^NlJB;I7I%j|=!O84 z$CAE_G$d3aiKD2Y|6ypcf&^EcTR^`>(g-yipd*^)c#tH$Q#ZYbA!F40Dlk?qoYAy< zM8DYfe!U@0i{vc)5jRn~+;bW8!xnJwudh#a`OO_LFAEZ}uilCXX!mgTa6B6+- zBv&KEN<2(3m$?V-$#g|?-&xh_I6HS$Xcz0fUy%z+WA6@!98e=!&1oY_=6 z4(Y^5>GlS(oLTHBQG+Ybn%f2K9lz}WBMG_UUtG?{e{Xfqx4^MHGlyB3V9hDrYo>)# zQ)EF*_ODfOcqH_Z-Hzqqb$^+VIb2740?S)S1OcJ4qmgfU(DhT%p01xH2aU|GA&5yN zUfS7gu2ofe@#bq58sLyiX6hXs(7=@MeA>$hxSj#NGAyb9RY4wjeaSMjh=zijRB8OCy2EQAb`?$E$$)dA%&@O-feqtw zL?%s;(?ypZP|(Y;-&#bwLYP&S=m#`Q}Y!sdGfe?!Q_lkZJ03nzO@b{6?8a_VQ1 zS)qh$ZNyin`iDFdM2Sht7YIfOe3{~ju^fJm=PZi8A{k0BhngqMN`-r6kOf_%iWW4d zF7U97dv)r-o{R0f=WAhP^ELXM-)xFLt zP;{~uVpzZ0&wJYOI&VCG<>x>#(+o_<9Cqn$qGVy%Gzu?`9+MybJ5yef z#z%ej#5MNgoanZBUR={ATeVL=GhF`te^qG%%)R|Q8WtL3;P(VNb4aQq)6cyn!YoTK z@fYU2Va5=_IxRK-Moj#(oZSBUJnM`<^8X-r!-5{LMasQEapu$r-5;-$QEwIqYfBd6 zO3*A^3o5Iu&QO>?Dda@9fs^3bn!`MrXXhvtyYlb7d>jncsV72RZJ7;Cp3s=8f8K{h{%-DXu@m?|xG^)q&dZh*mU)q<+5$v_S-oCm z(I(5l*hX*ssV1)Q$K>eml_g@`>05vwey@vcwTtE1zmnbBufzf#VU|+aF-zY^c@C=P zD}}cNItzroqWQ4$?IgH{+A}(E7D#G`uZH#l65W}PE#02cmI&p&(ZkbAf0(^)ub;JH z4}jS}Rg<0KyiJOpB)R$!+**xpFZ}84W@_7VbPtWi-UCaQ<*{Ms`BbeCSuky7K7pG5 z8ig>CqprYeb8&(HOiaGN{(51cW3sQSP!l?qea{=;xc`AYwC#+ViTXlW3Arv!YLB@n zSs1%=?7Hr+#YPfTFxgNmfAks+Wb=cHPP5x5p9Nt z@&vO1X+--qmMyVme^`b*3W%kP9m*cTf%OK5Yzf(#{7izOnA13DnDxZEVJX;Zsc=9& zZB_lst?`cHdjGCG>wpM|gLl%-7mH9)B1wm^p2Z8R5LWvabelRJD0z%KU{lNwzOISD zB-+&bg8_tku*_ze6zWzCqh%&!L&w=wRva8B{inNufC(%X_x_tD& zh=VQDbQDw5j1)M7wb7w|{cP$(NRUJ`6f{#bRAju-tIVD*irf#%;>Je6JDXIs$&~JDph}MGD4Z1P*^LY*Yf0>wD5!GPR|w2Q5B>TH5v2kf z17I1_*M2EkPpQ(LvuA-{qj%9Uof0vd+rmI1!L}V5lErjy2&5~40E`0E*D8|zhX>G$Y<^@0w*2?!%>Y^mwFpM%B_#{-50k$wJew7H* zS!(!8qbDiyy|sb7nP3kZ$I%JaY<2A1EyN{IEf7a3D{obP+owo|&j4iv?+)CuJi)oW ze+{8aT^2g!du%B^z(Pk<61YVOGv1K)S*RZH<~MIEXoeazz0D3Z#j0&$wKwc7i6}AW z^TS18r>R%>&&g8`F%CI{&Krs>Djca^1AOfx44V2$1ztG-RLnfG=A*o4GC$l_Q`?x7 zCc)i5d}b|CY*L>=3QpT2_Vh|VQK=WZf6Bom`?GAo$F--fpz@<>D$$;57m=7i+h245 zU3@XUClAkwKPBr{6-<(Tqr~@IyiCBUv(#+ZQrfwz#+$m$@QHC-P)TcY^{SCM#fl1t zo$JGiHgAssussbBR~?$S(jT5`)+wDbE|C%P>Xdg(Lc$?%(ENHZR!@wq8!7}Ne=Ci| za4O1Wy~s+m6t8(5k&@Lr(xB0ywl+SO81cuFD&+E9d7Mt=!o4Ik#9ek+vUM6vlcp+Q zA)G9mt68L#xI<}PRke`}eILqJ5VG4OYL}DHFDn9B&5%bI5vl9CAaE!q<;7()*4QC^ zJm}J-%8fDM$_tU>8#5E}Nr+ilt?BzDs*V_ClA#3% zPzkUvS?F|T=)nX9p}_2Ku1J#)Tcf-q(*e;PWP)DsNd2xfX0|J zGJy5>Z+KFqaFqA89sMNMPGmIhUL+`_i8^H=M2V-ZD!kqBrQ~v{fBbCy$&iyP z>oX*Mt;UKs%cD%SWopk7_7z*ttu~`Z?OVG>JH2HgnN-#`*Z1n2;381>Uq`|5SuCJm z)x-Wj%Q6nkgiZXA?1DquMSXg->++MmWq&X*@e>#bNI+X?rRV{|*#&NP3Z;Bx_f)_Y z8#q*{1XA80$mLSwaNl&`e>B4KENtYTLnB7orqB?8Dv_Ea5}RDLPpI7fT&mf-BJjk_ zXbhO6=e%{*kvret-u+<5a5@0L zwyY!4{jH2E#?Z-@`hmoIB$n)ZmFRBMhzj(S!p$zA&lr@X=Ykb7f6_e-M(ZMrc#H^8 zE%v+ormQsKboy>vlU7^g>^=Sct`RI)5ln)9)Np=`ZylJ#_lgB76RS+xw2vPd z=H4V*qZiJoNTZhYhWOTN{zBe+Py9nGqs&QZ{oX^VP;q zKbSh<*OegC*VT9xoZ&*%%JjR1#j8#;m173GK-_2q&a^4VMtk+uoac$5r`b$bK+nTt zNlfF_xd(elInPo{Iu+7{%wFE75L+#lO%%d9879m4F;-Xwx%LGcv=VB%^+DnnEQ7=^ zbtygB9Yaw`f2lz0Z$)p=oDYuNv8Lg~ZAtd&6@2qiGu)Fktg%k35RKOMRt_;CbSgMl zTz@j^^_`ejd*QmRyjS4E<#Ab9*5u{h7l!*gRi$W>m3Yzx#2!Bpd7B!_A-nxg*Pi8o zlq`OMQkrb5wo{Yb6UIh(8&T+&6!kACMmGc-->>C zTJ@=ae^vicxS)i}9+n-AorhZk60*`lCuM(EaQ>`rA(ZnC%t&01#)tnMLT>q0pR*(o z-yJFPqTn#@I6!unU2N=!!m*uJLmViW2%bto⪻*VtRzo<+MK`{rnKZ8Y51FLxydk zpRHJ5uKTjcYVEcmmaHsCtO&Ok!UMS*(B=ELf3UP~A|DBa%F|+C2W{6rqP%3p)lmv((r;LpRgn|Tx{TA_J$@QevOuace zPPs@l8OATp!qyxI)2XQxu^RN;!hJev8ix%l3E_>~izf{}9pBl5ewNjx*X_9gux9Z<&RGyOGj@b^5#AVi4tCh3TEyQUjry5$%_X)6}2h(7m6IOjbwLQUTUe`pk0 zYsVN>IAl`clZU2yqCIKLMhAFVwa&qWv#5 zId{ML`PcySPJGacja}@Mewtt_#=v7_4q;M(@HgGPn~Q_FOsToY{xiTLqfv%>#hLl>y^nf)Mzb${welh;9d!Y9X7!0izlq^dBqX zrRJ(Vf(gCtg;?osbEl`@sy7u3B@~uN;NzYST-Pu%cJ{;^S@GyT%b|@`e@|M^Q6ar< zoOS~J48wkr4Zb5_CL|~S3Ry>Sy~OK%eqfS|MlSfC^c`I_`^A%!uasqs@unzVc)V0M z72D_XJg4(P&MhV7Y_soG54dS=fEsD{(ornr!d%HXf#`@=UtF(2>zgF@w8x<`9y)44 z)Vlxx3W~yHkYpoMww4F9f3I<#d#6`r$@4}|ps_8?+hk-MY~ecZ7tnDENxLNlF?`WD z1pQT>qWHRfKRnp+LUSV1dc9N9^WY9TE2+~2pqqreuQN43+XOv!hTRH`F#ZF=NoQyp zyJeD?4J1|L@P^IH$BeV%ytGDn@xTY>>jvXla|uCNeE)iGRBN*9e;pCwSPo;-G4LHA zLtVX#g9_1z>s)P71{fZvKt$A1sJwgg^fJN(?=W<6kcTZM;UEUz_pqC-U^^vN$&$7% zaO>nDV?yP_OhW(;4513c;iCwoG%uzh)XpiP^LQdFc$8*GnBnYop*JG#u}`lgfH~j3TIdBe{uP-m49m)NdBPnMpoQx)`zDF#ddD##!2*S@0md)&PYyQaC3?B z*;x)-Sst043YgGUS>1RS8N3HZX2^7p3zuR4zfV$hmMCr!?#N6=`5nUNz*Nb-%V43= zlZVzcGuo_v%c=%`t8(vDqSDIG{~f>}Z5@7rDg@KZlHl}&f7j}OS9r%;$~DxxE)RwQ zMRM|YVumy3g__{PFsH(PMViQbLAj<*BI8QNs2?%q1Ek&K(*wiKHv40^+=;a|YV(6@ zs~}yN5+FxQXk->bmH}V3evY;n8DfD~2Vx(8TCNoY z7eJn$nG{?_f24~tSX&Mzxhdz#^$kO7hM^!-xhYUdRPvte zbcf;{6!JVaxLEbckDj7%19WqTHqHidcwr`wa1*)PFAfQaFzEV$R$O3Z?ym;vGOA7JByZ%Ef9)>@_@PY0@h7n4UmwZ^b5w;v z4c{+Q`=I3c+q{(k-7JoiQC5I< zR>9(|e>EVpjY!8M25(j5qn2eaN0ixN`E@t+%bdHJTj-$_JaX4*R7H0)*{5s=jZy7s!&e-Z4M+@tUvi&aiN`eJKXan#ZIbC}TW z5;{6qwZcLP%XE4Y>vtl>u%7cheCh=>pn0l|i7jT|WORo=mkabL{&cCBoj{PmZazb# z%nJ=F9N0zGJ6*ejc6OwC;Ja&)N?Cr)RwPllRyD|_chmb%iCVbQ3m&y$-qOyQQkJy^wc&F(d!Lo~E*Hh=t(m&WEL z{|7AN@-ch{g5^spIoZ&HR4yj=vEpzJe=PLV>3H6599TvdLz8+O2E!4_VwXBOKXsJF z*FD_!nzhpcC&g!+nJtNUMuqwKeZAPf;lsT)>)HqFrE6>utsegh!7C3NbObFDi*52S zI{{V|0SZoVusN)~$2dJgqeLK<^x$1O)xSrG)iuUpA0vX?%m}3#p(n}M>W5x?e>`W( zt_>M~m=xwGDIL@#=Ytzk1-Ut!o$eN7l@A8G674RuyCf4UZd$&dQd93A$wlHA)ny$C z1Xw|Na+Ci%;QRT*cqEK*H)@EjPt=Ap$(ShQr6 z@rYzjLLn38Oa4O7!sW~za>r;de|N3<2ZFP(+0U@;WM}GQC$IMCcOo6U0cJ~7X_ffh zs97h%37KMaMbxfXNSlYpPk2PJU80-7Y&WDT?A9vnye5L%=$1K^Krw z28C2IkKyEHl5!9BgCrpE0E$an`s0@Su#h&sn-$3!Yo3=lf{gn!mzhGde-|R*oQ1Kx zNYmFR7do|r^;ckc^`2<2E?)E^U!lVhmu$QIXQvdLDsi`SA*FZWV5#iss&gm*A<+q5 ziEdHjtZut~eAT#x2$cYdwe1#lwj$x>kL$R}Ut*$m$?$||Q#~|G3hf4zw(JI<3TjRm8IGZFe<6U7tYrn zXS>Tks(bM_!e)biPRmqL+<>8gk>NW$;a!WYSMv-1!l?TK4#@o)<(M0;Zi=(u4YioJ ztMzXnwiW%)Ow7z0H$)}N;g-}m%!_ty$&?}AP5bM=bwPji0?Mv}e=!I0k#iBxa1cwt4GdG;X%`;hkN%^ZM5 z3NO;O%(Krq=F=znk>pWUobZP^81a+)=v>wNAvn)R{Ds@b6}oe0cI{@E-D=M4TsE+)K7e;4eOZ`Cgyq^tVjU=G;hLf z`FA`7H`GS9F`O}h>@cHt+Azk{9fKVzg5zVWv-~>~hxz>vlO=#P8eHG30b&88{=!6! zIatA7hG{Ux!xy0(#;PLq;O^&|gk7|Ocz-@_9F~t!(^poKe0Ho?KfyXD^&UOOX%O9!A)kPh-}BdLA9MrA!3 zkIg7*;?J3%f6_>7i-)CW|wD?j1t>b)t>;SYKx;-9My zdV`twaSPhb@w0RH6&m8T(2Wu+#M8(UJTVt(--6eOf8kJsbJ7?!B*RitN`Mn)^rijj zSo1ymC0e_|ie*IuL3EUs)1`HT_ezMJDxF)1f>&B8VgKhTnz^C#$g+f!9lb6iPYkl~ zd(HvnTsbdY23+&b(Yr`^Sn_f@S~G{p(>)OR-ID6xCfQQbh|*7`-jxAx4A%IK-0Pq> zD-PV|f4Z0?k=5a4^N30yuDt6l#edj1$LqC#%m!kmyU6vxO&}2GbGSd+<&njFGNnQF zOR#EjsfqmzU<;MKztv>E|AoXn>DW+rR;sqj&;=)0@>zd z6z5d1u=2qSik|Oxs1$$`7Kkd6KR2rpzS5#Sf3({!l?~EbywFbeB~AZvf}MN!QqM|X zBTYnG964prj&o6Te_K~VFXpHT;e1!Zq{RwRD~}=DsFBQ`hNnFA04Q~qtoXoHP+#?r z>6jtz8sCI!)j4cC(h&bjsem>I7zFg2QK|*NYi=Nk3UkfKMgSvk^MS%pNJ+jCYD*l+ ze`J~8!yD)_2+VzOX1P}nP@D67?zEZAj>=ikVb*bbxx`u@!vI@ce-iVP0fG=!J5WF| z9$@k<9a2U-N2+@1{k75`eM6xP9Jv-LJ-#okjS6W3r)vxOkM{@>vMDj3sOG&6W1=y| zxl(=t$g?%D&g1-YEMgjH*9z*00A{1*e^i)azX?}(QfpppIF8uLI7KnN2OYC$PKG6gJCsAnr4}W@QTJ^Qo;T7Xo>_tTDoPQ{2L>f2M7^77ZYZ9P}p+Yu)2c!jvclrkOAC+|G?OinpNR zXb_P`gJC(q&x5rqT;G3)g1S`0sv+rqP`7K$7}AR#$i6#5{%hy)$L&~ERYsMZ?NpBgDb>3Q8-9=cMM2W&*fXA(s`hs#D{ST#Xd zYE|OpFjm!?j&`Zs+C84gf0KVTDf6g|d)M?L&x%{X>FWpL6n+9{l$tJ3m-=$tQ` zyR1OwWJbyqr4zgTrA_T@i$78qXi;bJCqmlIF@_HaB#D%X0C;?R7hj53Mpl#Kjnl{3 zz=Qr1S+RrG`rPGoe?ZnP-rXIq#y{G0Q4c>hEp+zP7uW{}IAVy{f1Acc>X6V1U$1g< zJ`TAMnNvWah6!$?CJN%&qP6BTS_ZQG{0;dWA7wKkqlWzrhv)_kZSFt>Xv|uqCtE;s z9thwe7Ifbt2$+_UFqj(HW+4ZINx(Q$MYV>5+g|XeryDo=3Mmj?Ys?_xTUSy78V9H= ziRTxpYd*+K8QW;XfAKMPCTN2}j;BOUX?)TktE?1f|LOmxP1L|o{%9ERmA&w}I!Z+} zV)%9XpEoKEzT5NJqWEP=ANIBK4q(oAH$z6%lztmv;;#VXt8N5!P|*+D?W~DBXfz;} zAN>s>RhC}p6cKKh&xcxZFRFu~-U0WmVIe0WJ!mJYXmAnIfBZHMW;|;LNQS%RP*e@+ z)+|&nP$TJ|;?U#@d3p0YB1~1LP#kgnM@Q;4!;956OigDH-qnMe4`Xw9tKs{wUJrf! z{VlE(Ay}xRve3s+@%J<(hmp!|cSY!g6i^)vJTm`&EYakuh97!dtA?|VOs8JoJDT3} zj+f7=p1%Ae)naL~*+j}+rq@ui|}+ZEw0zdDVD!!KXzkFwXhVRaE&4H%Vm z`jdC8R)1c4p|?vM0PJsp7EhlcpG;o!xK|{M%-1ocaG$_|uTV&vh62>Y*R5GxYbTmw z!jA73p1&1H)UArmq#u%Fh>IfKaLEv1-_Zmu(Ks<9e+W?fD3GyREe>Jul$bvDl#)Pv_ZX{`^d7ydD`vd zTf~M!dNo?7?emnB9eZ(;1kt1}6zMK_sQs|)<50fp4D@quK?IWm1ygMB|3$xy>l4pU z6(#t)IB2I88>biaqMAmf!`b}{N;Nkmf6VEB8(PDzewh%iH(xVVDFD@1)OaSepy>`! zS4Pq2&%^TViw^n0tsDjS=V<9QcSy=m~Mef7gsi z<9albvCT0O!)w5c;gm6YiQ&Iq(+p!QxVyLAJM)}8U&}u>a&CMIMe^!t;UzV#1cn^O zS*#$&s;IyW4wC2(e;hNxVHknbgraT$f6)yua-yZwa#fQnsn6(7-WB-eEf06{+f}N*?$~XFF<{flIeYO3?fZRv=8S(D|s*Ipvkk?hN z^TzrLM`;e1x*zJ4-n?i%w|mCrhd0#bl$llg6N}s>7OK5D29NIURBczR-rjG)*?h^- z$XBUfCpgtC>%=~lUKa0UgmK9{{2jcx*IX8C92IU$O^RLNs zW@`6vI7y&c>S}?)4v_@wd|Lp&5di=Mm*&|boHosj%f37Ke}ar_NIYMZ(DzS$@KDPv--!!pvidYJ)U%-I^a>T0Q(sB1g=DzEn<{kh;h~A@#e8FWO zq*SZ~e3OeEbIOGJr3h-9MZIt8?`2b2fF;hE;HM#A#~8&}=f;Vz*T8_RH-mS6H^6DT zv*$}9sVv69f4fu7x%|sDAS&8f51TqMCAR@HFV} zI$B_`w?MtOV{jU)}Bzij?@ zGt^%WEen}mH9}>d*4FJbw!q<_h8l`TOZ%v1e~CCqFYC#kiXa1>2@-8G)@$ButQ6H_ z1s#616JcxhN0CR0T>PhHBDE>0%VVl5M4a!SxpOwC|NOR97)k67no*jmtB1wg$rI69 zl2k9o@V}H~ss_4Y%kTzrB2pH>wQI<6N$=Iy|C(Hu>R{lu5_#93v>ZAXX^03+Uw#8Vo`>bF;T5wuI1-S1c zOyY-kU)q)V_J~^nV$L$9@ZBJ+#a~mke?-QGZ%CRlc$P2Z;ppL;@Qk#`8Efu4oVE_kQ0I*q%P0z(Tr07Em0P20V zAtT{_L@dV)fdWNCc_KS`QJD$~H#hhfesmBj$cs+q?~{U0S&BlK?MR`|-21MvE0g10 zN?!FYWGHuK^ljOi2hRuTt^MD746nTh8c+Z+%b92oy7k-zh_fPQi1|Wxu31k`;2T{P+Mnl zfIcQVu;S3y!L*9uHhQHYVxMD*j_RVyQ^oD?P#CeX`S7n2 z%oH126;JSxtVYY$n(}F4(K(8P0FW6i2h%R>N%im5?#ZlZfCj=C?e(5_W zJNZD4T?NOF8Xzv&Lff9j7?f0fP+y5WZb7W~~o z9lUUKvA;0lE$mo3b5UVA4jmuog!MZCtJT)!>x3otEwzkHt~1I!2CwmyTgN)hv2 zUf2RS&W;3liWJszA>VO5Qh2l#i;jnQ9BmgxZR!nCn-)1#$yS8U9P|=E^>9CTqzJ7C z%f~{768EEvd9Pa{Hw(P>vcNY zTz4bgN#71hddWcYKrh4P6{Akcs&+;xnW|E72$HE}Ll+F7f1@ko^35iKH`xmC@*o^} z9j+Zsm+BsX>Qh{6H>$9CCK(vI0<)}@*!Fnz!TMe)(X2U$^x*|#!nJ9yYM+jQq>n85 z&NjkKDA_EWPYXu|^D)`qn-^%xK1R(HQp4jdRwyK$gL^3@2CDJTYg`PF%#bQN=aFnO z7B3ssYpP2-f4d>?E7~V+(!bzsShuMcy&G+sB1fm~$e8e<1WMdw#Z9l0?Wkr?t=A{i z!dBKH57fh7w2m)Z_X67q`1Ug5NfM>MPMcjf%-nuST0kh$*lFFj$zp!tH>ysmy9XX} zb{Lg|?@>RHlko4>(Tf!N@QyIR8S%iBNiGKk|Ae}ye~zmPq0Js8nm9qKXathtv}&9V zai}p8n$>+UgstvHiM`oIm`cRru%jrzm}(7nD@oa$Q1(5y%^&r%56yTLJc8ha@kuvL z$-8z*ypWC*;;3#5esTcO@0cep@6j1h5s29z!$W)dD;sfrq%As7+GL_o5QecPT^@Xt z0zC4xf8cT0d?I$9+Nubv8ukEJ_R-kmEXy8y26!2`=&a+lj6&*q$Y#oHcV> zHFrJ7az!4h93BPV>JyrS_Q8udNysN_3-I1Ddz!XQpo?I0ymY+wE3HX%fD z;sKTa=p^%8G&G!*&V}mzTgbfg^^DAFS>Dp$fA=8xH?vX8%xPoT?5Iq|ZbOl;i7pOF zhE1j`n*Omg5tmLlw8h2v*X-M&3gbgJ#_S2ZvtQCdkGz=6Z|X6huisYc9`fAtfix{>o2fb=$Ransz1`{F-dVr*cEy6A ze+kk?xjXKfjD9lMh^QZrM^?#$-^~h78s>Za1|y#Pvm(6{?H4Q&{+lJpPd-MV>otMA zE!YL2RPL#5X5IXpQ#R9os7*%^52!vlL_0$W7fGZiPmS!Ci!twW0oVX710ug(H`Q}3 z_G!OtLyZv*7G{c!ab<2cd~1ad2Dj>ye+`BGGuU1`@Fjf%-SMnHUPugW| zY&{*800g*7CVGFVD_7ogE0KJ!I;~Wv300$7+Ppe4=cu9Q#mpY)%5fGSEVQ5n_fQ^3y6Z;qwFUA{d*!%2D>sNT$Gn!%_qtU=uf18$g zMqYd(ih1TuZh}jbJJ?JU2)J&gPV|QEBaI`l3U!QY=yFPEUQ3;by5W}RAhIR(ypJRG zsx4$Ay>g2Yi8Rm4PuC7o{VlWQ@IAUP5z(vicfb+xh>52vVfnZIXLOWl;`?AJuP3uj zNWr-dOKqo?%(m>Suex&uS`>g3e^Lz9_&+_Tz)23R(Bg0x*dbGo0QSXEWrtHoetg6q z#KlmG{!+U_-+o!2RWi@U7%h^PLE=)WDt+BG9Wo*;8^=X5b+Ni#I$+G}dc-Ozb!;lB z*%%bdOm9mw02lz4vixU-9T}H=I4R`P+9r)?1uDXJ!tcuIoW7`=&+`!be{wImxavWv za^|lkAdOrAPe8E0Lxn%kvhyZLMqa;AUK`ID?z?)UBkt)iLx8!ACrjzSlGY%q$l2i% zeJlvttY$)Ax))P*LWjB0?;~=p8*?K9s-r@#_|Hh) znyK_XcA{8v8KV^T7sQA{`j)i;}$ulkjz1mdFizUekz4vz2PLLrNL=s<(8t_E`s zQ9ldo+{IP$JHYEA))3yqLKDK}k{G_W@qjm8futR16anIsN4-d6=g=4V&Dl1U#jPfLALqnDR4tA9Z~F2Zc|%I~M} zV%TeBEr%Qe+&i;ll)+U-0DD9>`O=m2@AT9JrslG});~(56v)7K>t|}$K8@xDAaD2V z^vyldq>4;7#XTeDu)PqalP3w(_Bgpr`)q}NcGgVFt@K?pW2mFiJhnyM$`G8 z6N*;NzC)i@;(y+Er%|s*fmPs3?NOP>7s$X|#6ms=9jYavGA$~FuXyhO_eEBrPbaI31o6s`j%92W^o9k_^5dkI1 zqyf?7aF$~4e?65Lv?a`tC^aotT;jxM$IbckiNpfnNPlpC=nUju8g#X8L|_92YLyb_ z@{w6$=Uhk@F9V^*GRBbD*B<)CzMH^>N=%-9kkeEU>HM2y+nzXHX1Bi!J7l`rb&_fV zubfeAA%%$O^N4wlTayy!(7bGC!BjK%V$u;kK}Ci1x-Bzf?fM`6#kDM*i_Z}mP%DDZ z)gBy2Q-962;n7J{a)xC>CnM+Z0p>gO5Ch%ad3x4Ery*Uf>`|jxh~YpTU>f9pBA+

-RA;}sh9d|2&uDor@11d((g_sJ;VPS1t*>Ol6pBjj=tv)jeBZydFBbM>0pIOSdK&DYc06xmj)JuiD})p_h(N*Vow z^?%SW_gkC?2>6d|^|`V{nWYq==RP0cro0MOD~kV`Ti4-=lKbOd8G58~*}xlVg>X^s zx{}QWLl-oW{UHNMO*#9x-KLiUXDb*l;sak5&N?WA1b?ehojL2?M;^EY--KdV_am2g zzbEVcc8WjrgvFlO=5*KjbLc(#aympa;(yi6$M?jDL$3|OurDbzFUU_s|KIscZ7l#r zc%hM*GL~h|mr5ERbA~x*r2l`+QP%>YaW<9*G>$4sqpD>Pu(i{F15)r%BRGgBk8$L2 zUaYid>X>D;jtghIUSH;TAYXplJen6-MBFFdus?@x_`NgNf14%WbzDWA(KFU~I)D3h zZiH>_Fv~E_YFw3?)r#hvHF(v-!dccC@1Qw}bi+}F4RlS63hS~n#=kVf*!3u3*CTET zM+8;a`+q^UDFk`^ET9Fx{ZPB+!*)kIG|ByUK4HWLb{0ZLrd9{?s_)NOxrl234<)KP z4SL~;*{aqXBQviQp<+tA;ZvtKCVy!+3lUer&gR195(ca@F*A}OaxI6bp;AZT9)D0ljbAR4uklohKveQ^QI`4NG zaS|ZNIIFIMgmoWa!a4mmNz^sj$l+k>4-z`iD4jSn+r9Qp&r@WDexePvvVRnjCv|jY z7jaGYYcj6^5xO`&|BOj*WWw$r!s{?0oKkb+wYN;esjOH3%-dSBAm#Rx$Jlj|rEip? zI12Y7n?`oX3%C+D_ilFe@5j0Mk+%X9m%a%C77;i&3NK7$ZfA68G9WTBHZVAszwHAR1Tr`=IG1t711Ep9 zd1Y8zYqK_1+}#Q8?ou3zyB3$=5G1%;aY}J_*W&KQ-HL00;>ESVNB2Ijp7Zy+a*@S7 zdarqACRspDuA|0ssX?HITiD13L$^8qm_!&cqqO!NSJIg-A^; z;S4kZTZ0@VO~60_058}Iplk+y^L>A_U}NJ)qy~HdIsl#Dl;!|aPkHp+;GyLPOD5W8$ zp{pXr&idyb0PFxaptFnhpS1tQjpmIR;9u0$PNXIp>3+tnFp2mGrrt`6pJ0~iUPpi#M%K2bTDx+dou)^ zfL&bx#(&A)et_n*e-i`(BwU@H|Kw2ohsyb%Y5qZ79Q1Z)`gY#FChmX#ePSjKt}b5x zR-6C4Z8MOAi?s{bJKWAp`@Rv+cOi5N+N?n6l;jQr;m=!^9)p1|} zdw~D4{u573Qb7Q~$HoI-=jQ^jy)~(ngSiCA-u{iX3*w*hNm{?v2@G=fWc}ZbZR-GX zckuo{6c*MF<`#cyZ|;BU$g1gJ?c@rSmHZ#`Hxc5$WR^fMfDHh20suYCtXTgf{HtI7 zh}r*$-wNUD?Fe!NSeV$k0DY}3fNvK>Zx<6cAOP&_3iS2sbcAo!f`d=p6z&~v1lt9k*CU*a&vv!fT_5hlzScA>1{x0p` za#^s+TmOqWSlR*Kj^!_r=AV(Wd+Xh|{bT)SeF2!+dAa{f_tutXwhllS7XTO6Un<~R zA^wZ;TlN3&1+ah0i|gus{K)vf+vYDjDF-uQa09FNn+27mouUUNSmw(_ts|f%EdH~H3m%oF|1Ve06 znm(2JNfk_&zoX`7IjO`I){*-Hvz$KNL4+@vyF&pKDGY20$e<|%DaZ&I_$3886zfoj z;Ml!vv?f+fU7M?l{xI=V^dmx*5*y3WV$lrBP+WfsDDR@6Ka|VK*Dc|i&1n15Mhegz zJCfk<=zfUdn0&>!Os3E;Z(GZI=Uz0=-i+;Rhv~6|PS{DbG~Edaetp3H9BtAkw#+bR zoc{@TOb*tuw;StcrJ)t3NY>*F4%!QrZbToW7^7L&2-b>;q(;s=Y}_FN=xq*O4?=@Q z)L?(kdz2hhS)Q=OQbAUjY-~5u7YW_qA%-s;c*BVfipLaXtE}In)LR>%-0;9#Ke3MG zlt%`_3aCeL6RJ8)H-YpdhRvP92(ta$oA7j5ajZC)Oe!>}XN(`VB&u>3sD_lBOw+{F zY2jUyL-GmZckQeqcwa<{2uQJmWNA}!)0t#+*W%&4T5YI?bZ7IJqi+N(=W;4} zkqeR*6Wvm$c7i&~Y4oBk<_Hi3ix_}x|N;&0rg(>BgZ07t?)uoqKPBXS;luM#n`nRH4(Jzr9L`-o!0|)*N*Q39t(}- zUb?!$)b%*GzhW2q;zZz5F7?imX^)!eh2s-VrK6AeRDPVFGucOt!9EyZsx0=^KCIceqt* zBH6O%(NQ41LXnekg6|1mChi&)ZI9!qLoEyE&Stfz%$q4*7v=Ir{S!|^bJg!dPqa;y!8S!Xfm=3`m zqyAo8%{?@IwnOjR*0kcWNTPo#bm8Z7S%4Y^W~E)jjCu>%Ll7F*`pwo=$*7!;r9pCC zkzYJpB;U&CK|*`tk6axynOKKSmP_CEs2z*kUOuIRQe<&j7%ku@Lhp=V&9x+peuRf% zA>_CmqIDz(7E3T&OBM&Z7HiGWR3vYlr1(Ci8;+msNBKC~;2b5~JbHgX;E}k&T5faN zub*-ypij43wE(Yng~VMqmjFDjG+0-^otd?Wk@WJJ!UV*71zug6%UTdj;p53Yn@?}l zcrG}gVX|lE3ShdORECF<()RL zM;Nwd4FX~~;BfIDF?R0aypw50ag8%x_I(@eURW68y5=%8mMl2n-AgQA zAW$MXKOGYuGp7Y)I*mvlyPs;>P2;*2%^MAO!W`WryPAEX$CiJb>Rr5GY^Y_EPOgJT z#J+KuNy_++?C-DlcrWYxZoX3|&GN#(4ZZIdL9b=z$I8Novsy!}6rWNe6`G;#U&`yR zrU#6;V?X90%O4d}_}zX{vbv2-_jvMzeE)o?O5aaoMZq_j3Rkbk#DvUojY&(@t6NSi zww^d05RRbDfXIJ=X;iovrKU%1`el?aCpaY~kNb;BN@0u?4~C3lenNS16RY9a$Qng-mMYb^|iic3dD{B6DINSOzU}|E}@H^BUeZ7(Bq*R7B11H_IH1a(?ErW1%D``j@ z#EFPohrXHnV5KXH1ygbackf9p#L9Z5e>_b}LmeYW{}(fX3|q0P;pv&;kNcMTokT;l z@$q%eEcky3rBD4O19lNfa5fWyzoQRureb=g>=kf+V<2J=*7^qY#Xz6gfD9HaCKycV zw4Ku)9}prc{SeY4P+%j1s69Nt*~}A<{bUXK*diqC&r31UaJy*}4ClBoCAJ2|zA=3A%; zVr~X=bq=M|-}q?SvbILNmS34YO$4H=RLOSr7L9N9eDCy7?x0Kzp;}-pei2Ch#AME(B zOlc7)k(!s%%iW)II%a)6*Y7JIYO6YZ7ki@kmj`74k=e|2M zto35-N=#;Mf%^9mvaR04))FZGKWs`!#4yIh+_l(;c85yZ zN-r^@3d+)!O?T`e=>qXuJI*8Avb2B1!!zqX4Yn?)C~-SLBVFV)m#0-gEHZmh#I$R+ zAWyn4@S5#_6H-GCC;3U%ue`)>`S?XShMKOgbOKm_VLH`mzJV52HR+nhN?C3n;h?Aj3J_inqHEXovh7y1HeXO41 z2qi8M58_kf7ZVwRm;lnI&kz9rwHb}iJ@w!Ad!qe@pg0)cwzZU zPZHnFO`Qw*q;a~ealg&v6*hnUQPpg74CQ3C3<;;b$YkRip^J}@pr`>%0``R>=sdwn zoPNs3R5?7hu5ssn;xlo=B&;oq1hU5$u1RmR0zS7__$fkr%rxhDFxtSHk+$n0T-#vfL+k4DwPY_@} zaG*a#&Jb}x#$s1Atx}j)vkmr@+Lqu zxr{T-F*aPgp4c^fk}iLF`dytKVenyL{W`#B8HQ_ikcUXn5jP@8gRZsIXD2=Ivquwt zgZ3hNU(1><_93k5Zv!t}6I?5@)(?IRm=a@QYVWDyk9+Qov@qx5VJf*t?X0zjJ=r^w zH=>Sk-t{x{Qot#NyNMc7T1^QKs)(A0u@X%n%k&& z2cpL1A$1MhDptoephrFG-R$IO@O#*&YK0Gpzi?`ZedD6H-?+sPMx@4x9MlC#0nIq^ z(5(I7Bga6w*Q~$b(?3LTyHM3XXTZ!gJ}yLK;&cqytPuv7VC&v{CAfJ2EocIYCUBiROOnXS)rNw3!S^ zdbM`ZP50o58lLbyS92G;Vs~}iWyV0UgU`^&st)Xd0>6KAS^6rhW*BRGHGxre@x%e} zA08O}lnwgxYUcUQ;Jd3b%IY}-vn!4A3={?@v&?hKz9b5+-r6BBMZC{Nop^ZZ5?6>Z z_PcFsv&RlP91_AuJcqSaDu@xq7zLtdcIX)f#{7x}(RHjnb;;z@M)y6_Ph+Jqv=R@}dC#1@pq9@r+~auj zf&&iazHsM5=wQ8B=C?8cV!!z8gy*&b|BCI-Jo$g8qki3~@%iPYBMZT=zsqVIQwDJ9 za8Q4AhF~asw7S`J`fZ%EJ!rnHj)^Kz(Nj3?<1c^5zIP_y_9@I7l}GRqM@ zmTEtqq_k7J@HZ&Fy3&T`Cc&sK$SVbx0wzk@tsIA*%A=V{wD-|xM2+C9xyQoHg5}k4 zCHsFC(6=Oj`Ns5DQpaxP*mK%6zfX1fP&s9v3FLOh1ZhD-xq`YvXTUmuwi^S@m-vv2}3z!l7pU5R2{2a*$+(x@PVreBq2%1$aZA@-%;nkdoy>pA-J9>RBLcmGE?=gw+qwBUnA& z9VsR3EsAI;^an?X@Sx3pFALb;z4J~eqlW5kWc#sn#9BRMVP3gTLsM(CM{_>Nz<@$_z=O}x6OFCp!9N-o`G{U0G5Ss!gEinL7;py$H>W*k3N5; zWxcn9{WYVWm>vN4yM5BJvV&f9MlKW9qAOO=8FGf8 z+gJMUcrjF(><+m7o=7DCuEnl6>Mj-%EQ(afb)X5yG~h?#lK*vId3;kcot)lkLBz)3 zk;EA1+s7F|gPfstV2Th{ULE7xY%e(PKF%{S?!&&TUGz+ zEAWf}(pDu-Kb~Pq(^ek}aV_s5i&({&)8}=9|ABGL=}^;p`qD3~4&Oe3#8eE>LSVTU z*{vzsejxDSGjmq$Lz7`(EI*yzMALMblEgz|ZFVv!vG(dUED?No#I^7-`&fTrNl=lUVL5@S)V5{L70Tax^RrQb6g#-8STF$7EO-tKD+M~}+uLvVidP)68_MdzS6Ig{QG zT@fFWHZ4ln%*Ijod{R2)@Kk???kKggqi1UhD=<}lLi1H4fLTPEy?V@@(}#F-qa=T`}4J03plu#{vmeb)XI%TQrb&^vt;c)at@Cx8NE~YwFu^yBuxh9G5F5ObFl~^2p1Zn$ZG=`88|d)!eb*LjqD6mR{XDaY)PY2JvbsHM9Z^XaEuMWmK(E3; z(>;k=`?|2o;JwV^F}FLE+)*p(WV` zUq&U&!>Z~i`0HpK2n&@FDl;{|kikG}j5L(^)O zK=jLSM^hRGOLZhxm$U5+2CK#$D-SPBI4GhYTZRLln}r%-v? zeO&Wl!L!_?z|?BQtu6KCEWDwM$(qR9$#bsev#-lGhKD9Hh!TIf&fiD{63~2;3+~3+ zs&G@@W#V>y%LL;YP%Ht~LmU(-p~7j{S>f(*R-Gh$$FCzOA~I`#E}{WZ&7Jl{qa`(! zoDI(#kVtkkrpPZ}Ij@Ll^|UdbZ7F=oSxJVs44P(K^2kNhH=oDTVd101$8w+&J%9?4 zl{22Igl@JRv#ozmbhWM8qw;2+*5L^hmujrb+Nk?&MxoaMmXQ4*mKAnN-Y#XAp6JdW)&9TNY>d-c?bMCpI}WL@aSvyXXV;Rk`Zo^iOL zmeHW21I$IMrTC@d1F$|sAJ8VRx1Ho1d?>jxNDSiW`Z!y{xhCEo4^KQqY+L0J?Zq76 zGi^-+DJ(9I+i|_(A{Dig!+sII(AiaEdXCC7;G$`?PSq_`b>%d;s>Ian~|v!A@wF0Lg8uJ_?d8dK%zn;;da|d_vlcWA5#DmLzIZ znvBJ{QL8wTJPN0K^6hWi4&E2@r$H#&bn=*)axa1AB2(1y{F(wU#K4DYc!Lmg13q2r zKflI86s>fI@egjS^q`0ImXT6l9NM!|<;yku4EKMDTdH~id2`BHdbNOW*7~&YJD%6N z<&Y9=^TX&}775`y?ibt*euNba4vQnmruM`H5arzP58l{sZgrZrAh_=UwMD*%-D9De z*r62`t;T6IevzGVdusI{lf_03ndQrXkqL5N$%w?66YU>2PXRq>Ok1dfq}+DulaFl9sU&xfv6fA!If34S9IQw_RCQ-wx~Ni2&$+R}1#2Ufo}Rj3Q-FEc6A z1^OQ*yeE`S=Z8*_ph%eGN*3*uIo8uP14far(7|e|6`rR!N&!gCvE)IpcLC_lDlh=y zOj_mM^P4QMPu~e%;K*(6WZ0sr)2d<7?c;wofUmt;q4!hv`!b%bJL$QR=_JIFW8Tf{ z4`@i}t*-4VI5i5krUR_|+>5K*8*S3iwTKrkY*9Nzs9F8!Hcb#C)Ixq}c4UXiicw|T z99uIF7rVJw`sUaMl0D0vt)%=EhAa-|H^Y{2i!=vgK=d)6cRtLTS7A9Y_AQNV)FFSS zb&p5*H1%Rg1)N*~<2p@isqEU{^^}WfSPnsku`JQ8ZA;c+MrIXkYa)UT4Zqgxzw5lz z?2F%C;m&T0QmGr*edJa2gQB6X8c^WxjilkF7qDD&OwvL}S5Jy?%gs{!j58w!qFEWd zEha}@*`S~OJd2+QRtQp}M@-ZcGbDc@F9Q|qjZZxc>yhRsv*vh|7f~RCdzjciX+8Dp zC~AK|Vir(UfNt-6{d{ds)*+RHQfSVBAI_>t9j!fI%HtdKD^Pw;oN~CH z3WCzuaQ0s2K&B-S<4oVP#1@T(WL!HAr?cLJKvR&M{Ob&oijSWhrfNL&8s4$n7Q>x#53Cz&s1&@Iq(yN>{CS zj?}^qyMAB~b8yY*Z$F{ck`q?+{=frUO54ROB6Q&EQqAS9oS?B52OB!+Qo7(0&DdWw zTFrDVkizOjzKE8!S+Xe1<$|4rs}hz7VlH8`6C(!=c7Rlmn))bA1uhb_bpz5uy@Kxz zi*UXJZ@VC!%Nl=*x3f3RTH7cL6)n+p-dm;Dn?wb7wLx|u$NbFXotQ4zXhTW#MO+)D zGm<_#Xew*VhG}K0dO=m+!Le;s=XY6+qO;B5bs9J{t##zlxT!XdyEB+Ykmu4D;+XLA zn!nxIsi*MlwMwnTx2WBT1j~Wr9Q76Xx*{+J&?KA`zTAIRQrgQmjc=#+M!q|CJmKWY z^*UOwY8W0KHVaeo)6zMO)sqa*&=jbLBHZe6GB7@vRdlK&Y~TBtsosNSD@+Q%bA6bX`Naj_zNHIV>r6?IZ`o1)cRKvQK4_hMvR9vBHfa4qaLh#j%*gXV8X4$#bWcq7<;WB7$RW3(;UotfCvxgdY&+J z`1DuEP8t-5<~_wN887p0Rh;$?g4y`!PUxigO3?skQ;cl3V@(G8JC-Qmi1L=Vpt2&J zI?>l7#U28D_=D?BgUWNH$pkcW1S~tegz}k_at6LY=bH+%-$rz-b$ph~ba~1nl2({8 z#sYubi0R?DaE$5<`jg40iAchWQzasp@RmutxSxcY4yhJPfx~!Lml5r;hY3<+Dc`GA zTh44~u5?G8=%X&47x%gPgtx7w6zT zexSEdm9)7TM8ycAR%A>zDo!=4_%k(2ItH+z;s=?pFUV*}0%PZzv$E;HV7IPTFQI?A zZOpTh`pQd5ktBKQ5^}8}bmns>3)-GjCuyzJi_fa&17V7{ z94TIk2d;cUfI$;#>j2?*)B1rlPloR{DS6jrIp&(ZRxsSHz{=N9OAh}@2jcr#2F`*o9bKIrQ3gy7?KarH>T|DTh7_vo-JT<;#DL1vhJ_Z2Rr+a zhSh&)e+N7HwV$E=PH`b4;xCMsp=hMhb}2fr!7C(nF^ZB|m(}*W+`>6n?zt7E9&&i6 z(g~#?Vv~MO6JnyYTp&P$ME*-v#e#9hB_t~v?R`JGNoD8 z5P#)SgZVFTi9dl3iRU$e!^;cx4?8snSJ}}BW?$yARWe2e(xH>a91zl#4)1Bkgzp|< zwPO6}dFZmez;OqZU_?;w()NSjhp=|`t%c*FA#B%mkC`9yHT+S@(OFMXoWb3xcvqSO z-Kt|`O2W9xHt9V{`Vd_(%zb}LeoUxy0tIW_^+ZEELoxO{w~yjC`Jr@|k-i?NR}n2d zemyKlyy;K9`olX*27Ci`i{f#rUMxsDi|O*hY(fbv8+{RW-t79|xsU-~%E>iDagA>c z$NT$6>)oR-8y=62ujWuNM(M(zneFskcQP17(~=sGZNdxCzQQf||LTA1NLAByJtu5( z+lL4eIic%Ep@1*7IzfR54h^-W!o5N&VVnZW>Rog+KBw zJ1188xA?%4tRi~|0`-43ruYmt5owwcDSLFzsQN+d>-K(2j|NOhf=ivfLSY;n#W~i_ zmp@9TgtST_j!!gTH>J(4ghSHK+x;fUjtN)YlADH~%1V2?W*~Sh(OyECw-3=?5~z=b zb3)Y+@Y$EKeG@sp31dKBr`+tegxnlSSW?q?2)9^wcQ&>LEA@Zs!}zZ?Y>lT?0@heG zk3%bxXiHm(`2a4Fj+MA6+RJm|a!@yimvSvJoC!v4dvD8@5=L#VCsQV0HHQ||35B|Q z8M_<5vVK^y#wz-n)Y0+|=ZpzU%UgYCLQLrMuEB@xdFburV2KQIK3G?TmQ1I^mOxEX z9HeT)@@!_?6nlTC9cCYnbsK67v0gD^Kw42@RjrXexa-B7 zv2B7S)|C&+U!&nI^gdJ$m}ExVY0(hD;QEF^Ix^1nXx>kd-tME_A$LaERei9zju0|; zEd*;3nT4vOh_*dui^+adiRLq68Qu6Kl=7km?-WQ)xa5Du@9m1;y}HIlIpvZ*P#+B4 zKfg&}C(Yd8NFV++3}dFx2ISwjqx@aj8{D-6(NI=f$CRP3jN!Xe?e%dU6+I&7O< zt@o9L$rt3E_AenK(Ntu#bQ5ooMk9{2PRU;E9Y}Nv6**-zXw6gvGz}wbB5(9$Y#I`+ zpKR7bD?(#mi>J1w^3DiIig9xJaqai) zsDyJgWl(dmiWBDGye|KUxITuhjIuyOUw`igmT-ZhNgq3ic>W z(aL{uzaW+!C;KAtF^$A$#b692?#6Q{9r}z@dboe^pG`l&osY%SciM5UwcD;3dk{Zw z?^Y5Q`-Z=cX?CerYtJR(rRzK-l5tUY5uO6~upy47oCkYbVD}h^%%BG0Ud!Sct3TZ+PHy zSr_aseRqDn8TY}~TopXN#3U*-Xdt(oZX?CG;= zNw~l-+3zka#^(8)sDM`NpIFa{$3FQ(`6ZnX0vD&3-Hs2c)#qx~+v9CDej$ss#-Q^V zZ=#yI={Nd~lACtYpC8iX!7yT0Z;^%4zt^rXvu_s$as1L>g~Z|H2Qy5eLuq^+o$qjp}?n4jZ<0+SF={dBi|`q8R@AK z;?sG?q^dzCzl=VGX$Ype3^XGMkJw$I9=YLJgMcuLB10;nw< z@gfkbwE?#u%h^~!&Y`l~kcE49g@Lu$t*9c%G_}x_QKR!klyQ$i0SU{Pg`YWjHMDMy zen<+DeD}fU^9@~9--CbHKzx6E)v5(k{{wMQHX54&GniM6bxqX&zP2L+{oMmB$DVTZ zsD)}~r$8uNLYP+KT$Zn0#E8{$#8f)_e#?#Fh#Q}sxQeEsL>?cKLK6Nb`c7F)rpnZY z8_QOLbg@*4w%u_`>UFKL<%Zhcbju06_~S*fSj9mhocm|e7rBmc;+ubPv_X^PA52`r zOh);4as=E7lpHD~4Jn$u-mO6}GN%Gu#PBtd#m?`7YF0 z;K{8~A6?we))eU?0uc;5lxt9Ozhj}b9?4@Nw0^mm$2Pkae)NC7!P<#;Ekx|dJJyC< zWD9aoV0ws!v<{2mF-+5u`9Ya$9*z`Pn}$umsed!CJg_Z8`V+%Cs4R`cix|vUe{mpL?nJT(>;ESJ3egg*1+>8C}|K+#k_m3 z+3lCzzzHuoW^;dKz)*$(nx--8#Zeqnwq=2M_WX=WaB-XSA-X}Y&!+LyE7^R1@Q#OJ z70)#$_zCGXN6%iJWbj&0SWTdmU5G(x0YEXZw1>&+CfSFwoj>!TCd zBSCtw2JfaJA8x-NN*EWi+j5ufQlZhJF(Dbg8X{?K1)G1S(}Wd98+1KA=~<}6J_ua_ z6MeX4|OY@Ls zbTQViZD=tbZYaMLKF%fHkMX#CSEKN2iKR`$Y~s@rAX4oaV`KFdn))e>geKnA!fy{f zSTXb2(L?S@L=SVEfA9-855foaa-$y{x4P3a*)o4ozih}dc6=6zH+jpXp4Z_BQCw~H zy+qwJ_hoNMSP4qoecru`lS}W29?$fjkh;j_`6U0-k`^oyZ_%BP*(n}n*~StKuf2wi z7i9vlF};;KP9M)X^i@5RFAUl9HApfak?|$cot~m`PTLXin$@^d*dQcYg8WsX(r1;F zBrJa`wD3bUBd@>FAnTk;VL9~lj$My34)Vy1%t3t!@|#Qs?eC*n;t&as*ubj9Ub(~P|5L*oxYNElERE_ zyKLr6rAzO@q@o_&hwD8v;B$t6*$s^{m0Li4FzfV@RHXv^sc0sVJ5rwT zDntEX4K(%Z@a{wXw^qqOi7Pkg%6TOdgseAhuL;M==OsB@J6$Fp9fO$olvxFSb$)-{ z$m3t&zmPUi8JO908nSkqQSN=L3VG@9w3MI9uR4|FPLG>w<4+mdZ0>1{_D(3`_H{CP zWP52F!qFaV!sH@jY?TCH-UVdY)Y3n^ySp?%Wfc`54jzqh$zQUxD!=x_b~3%Uc-k$y zHJ5ooUv$}qg$M*r=RkOElmLiVcBy|R(nf-s3PR>IL<4j)we+hCgX2zu2ajcktOOmk z&d@)rCBIs&&Fv*XHQyk9!$5t)C);LTRYMa@fHMxq`+)(Q{xQjjT9*t+txo`9I3!BX}Cz=c120fWcBh~Uscicr{im3)M#_jZ~<|yF3)GzDpQZ!I3 z5RH-%Q0(+NZVuX#d)J6)25o-~7Pmq3@z2v&>neDMXHkRhok`2p zYZZIwEmf8Z77&ue#B9H)^YAWAM}Lb-T|;>RK56=M$BA=cyd<gIqA2eSVs2n_Wy64R(O?Wud#9*e_k<%$C z7HmR;Jz0>(FE0q~veJL(ku3vns>d}(JZ6q82y<9tnl>&$k6e)=$AD^mQLC8IJB@s| z^Slj(qSrIk%e}};6N&XZD_ z#djghJ21DupNreM`HmKb@eLYzx^F~mme*tE9gQw7)S4Lk#o&LHh{)2uxQv}YE9lVE z?q3J0{sjCGDwQ6XV;}gzUS4ygA7|7v!{jh#e8-Ht@8;&mxoY?db*U)d88T=7iSaX< zxGyZ`7m}WPg`a~Vth`gx-v(&TkFDvuwNh=3khA8g>yy4IYd+z97yz8{Ky-Z6^ty9g zu84F&MorsZ`00NzIhU{N#rst|=%Ect(C68^Hv_CyDu@TqWqrou)B7BWT{cY$Q;2DX z4b{<{Bur=Yon{;QN9nG$CTfob`vPZ|4+bf}`fBPua%IZQhqy7z6M*3ARAk9^SK&f>2nH(&G8=$1bkB(DJd?EGH*s>^Fh;9K{DbbB^7SK z`iNp|XHtJA(W^gcUaUPJvEn92V1lA<9>F^6GpN^?a&&7N!!(;Muef)X8_M=$qb;D_ zK@YNP&*ImBfE}8KjUQ`iVW19CnB{tO2V&SKcv0_o%afeeHU#pITGM;3g+e8U4hijr zD>``t$6q)H(}Ox{f|S&1+;)i^wPdixBxrEi*)?Vtj@LNT>Vw@NjTU)>B6{<0y4|Q! zp5=c$^SqeU2$_%IC)i3NS9$V>A`8t@TktuqOC1X1NbxRt0eiA^jyDWXtkT_Tt@i8i zBJ1yk7!+^bjcGn?EtwDf3cjN~mu^?Fv})rtK`E;lPi|LT$V_y2$3qyQb9ae%2sf0~ zI>jq_4E@pupJ24*p3%7tVX2oZRl1Zu5aoXkKtvdH-BtHg>&A`OWmvWv69x}WB3m;+ z?1|{s-Y@}vzB1Hu;9oYS@Z})~4~FbIZ)zA&zAA>6sAW&qyT)cct1DCz*1+aEC@Q|L z?SK_J|Q7%J{>|D0z>p8Wb;&wepE!-pD4p3r@zI3HHE7Enbb{4~&F~7q^s!=3GOtg_=hSK2V?7n5g`_ge znl7>{F0lH6bri&QUL)I+Px1Og6obhQR**Gq?xiE}B;xZz`MdZ;2byx4xL*VlU_CVz z_zDJMyP?^m0!Vx}ocEHaR$_VxL#Tgymg(h{_%Op2fRM3v`s_K?iSgIsGtFAZlJ_5u zelpyb$}qdxcWkXUmb2R)OeL;!3x_vG^$Z$`pRSx zAV1o?Izse`Rld|N<`r0AV8&nxOyjf3+0X)CZkjLF8BG)R{|r;v@5j4M*bsm94M4mZ z3P2HD_-r6~UTYU#lUE>;{ysWuYrlt)FgJZJU}-)x;GN6U=uh0J#aE|=weISn&}aR& zXsRhkSGa-Syd}N(-7l+H@NNc1qXg|#y7{8$)P-ZIA9UIZ(bd>Q9Ur|%!g~Z3? zeks7g3pGFjpy)kl-MO&jM+<-0N1{rOm<%&Zem84Iw(m?jg$Db8&v)xTI*|_fuCA^k zzpvFab9%2OR{I^!1OGL)8N*4Z@Tn611AOs9+Z@AByy$d?BALT$HVN8VVw+`pLx|2A zdY&B9F%JU#4*`OOdk8!7o?U2W#4;X^0VbOZflhRd47w<}Pt)UV0`Gt7^iWfiKesWy z?46Q}u0cE-f$*rSap&bfA1DZ8GRpy>%K3J#Y>+?hXNUY!J29-CmaxpbJ!pEh%N67O z$jTiUP>>H-SI<6y?3>Rj+v|uL*|&YhCy!x<@$N9qMfjTFHN*lMtvb^E;AZW6;wX zj`mwuQ!3bu$RW*)tRyL8*0`41=Jhm^HgH6H8-WNB^?aT)Wu1krL!!&H&Wo>8^t{fq z=eFG1oGj?r(uS%Z&3RrV0ES8Ju;s?h7vtJt2%8gxLPWGR=Q?rx*Ru$?P+P+BJV-`WoWfevw1ZrpAkBKNnF=8cwbC!27lHWwNPM-lZNJe_GBuvJIhf zg`qAT`2`vD1hp#Nl`_;K)o*%jlTPUF8bV7Wm-_Qeds<8R)GXzTi`o*)_>+?@U)^`t zgf0xsj=o&n%j_VWoRilt@%E;D@;i3eI;j!{VPn!JRHJ{f>e(meak%4!okNf=JQtw* zwr$%sZ`-zS+qT_r+qP}nwr$(Cd%k}$vz=X%I+abTQgzNro@Y~O;nlYyLZU142yE6c zsAw&UgvI-n;y(kOnME%biYh0``{w1%0S*hBdXj^oELxen)ojn#RWFwr60Gv}gTgaM zyfRMuf`!DjS5$>T($^>eF7g^5S$&!XUH=+XfA@DPN4|RM$%=U#kt}waCWT2IoS$S> z2{3V8w(dvJtfCbj%&)HU!6!L>s4fX=SOz%@Ngry?=wiMwTrSXm(s^}a&C+5obYJRCWGs9C|B4s6R4-*^e z{4H`)6=@*4sPncq)cb0xH`??e4t8Vb5O8?ubFz=cAvW)MWGAgb8RjdGbuxQsy^Ug7 z%+9#`=u>IM*O1UhE@@ybGjznLE-P|MURgP3uHNs?&LqdPCrPZ8ejcJCbyvvuA2z7b zYo0Z2J)#RWI)}R>TlMfv3j;dObk#0whk;!pHfaAvqp*1O>d}n%q7NSQ6SEpg2ms6D zwHe~4;VGCA8td!o$dAsr2dLu|c$U`TNXx~ER}(0c>*b}1=0a7AA>ft1cIcMrZ=*y! z75W;&=cc;(Y*+o-VtJg$u4H2j6#w$Rk1St2R^cvlCl+54ahf6)Kt1=q?gVtLU zTE(cZw^3R8l0Hw2g{YVvcibi@-%Qfa1|G@)yS3j&+IindYV3;e7lCrOXHnVa%OMkH zmX9h|=vn=2?$C1=&#?E7bHKfCj`XZt!m6uIgJszq030zGH1Rx4;VjSMTCDyp`pnENEt2Cxst7 zq{+scc%1Z^rJ9afq6yQF1)%srrS(BQyZ;mt61DfAPz5n_Q;dBNQ%q{YcXL zv?S}M=NJes&&uqRnuy5TkOR396<$}Mc;R1utRIyPo~Q2Rz+u?uQ-I(EcPr=Y298fj zmS6>!=v>Vt3U;iN`!oLA_2IDAcg#cGV_`g|4yeB?Jooj~g2*W4PU@%4 zlmgNnhdR}Q+!SUJ9F1;Ys++v*tO3EM?^P|Wt;J*98|vb@!03trJ-BfwQ}A?{@ifug zuq1f|XIF1pD}6a?9{|%Xd~zm=Gk=k~O1_LHKqJWd5WnqL^#vG%OXRY3W~ALd7c@5J zFV!t@e(@4I1ZnTFJ%0UU%=y?@5kP*$OYZ!0VS92Ckn$l%odau{>T7g$Z?tA%VGd=S zHA<0bmwXeX8!i?58G%bN04MuiT%}E5=wse!48PU1r)_kB0%+cJmdM_B%x;ksu{R3q z4INh?O8uAfwyj4cWG!_0KK{x#$BpHv6|{m&{QbW^2YDgwNz+(1*$$2Vny!?yg4%fW zBidx1#Z4w@7tTu4{hZR6c~5g%1-Y-m`5k1RQj4A%^GPiHjIQQFxstt^+w)Z2LS$N~ zOr|?~VS09sIwl_9cae?1hWUJ88obfohff#mapOBuq_0#|Y!lqC!+iNvneui4{`A3slLoMY9BMYyL2dIdES z!sq<8fRe_b(ZC7K}N?(NTQdrN-R|XOEVk)0REEzmJ`T zD;MPrR2Vi$V)UrZA&+}cBaPiz$oyC?)S0CNBVaR4Zo0Tqr#(ezk=>@8$BnD%kRJ{{ z!>_Zt7*b381dTMl_2lV?+BRI7=X30qTi#xJ3euy^x8dipr{*CG=7bEgU;(Wdjv*he zrFZz{hT6%@a&Ts>bB5w3LZ-AbgQKCU{UeY$ra}~FR_@*?O+_znR6S=xV9nC4>8v_3 z7l0~|!_&p{5Jp(X0@Gj`<01d z+pU&4rOOrL=%v*Gyn1TUQeX98K{`sf=*Ko*+^&p>Y%^_#C^ziMu+(RNZ{OXhGytoy z0lFPj;y96LDlOb3l-T>aagHu5E@jPM4e)_sYVnM_>Y2J5a|H*E#4r-|zTarbriyh$ zN2b~1@m49-@&_*T3xWrJAzgIkZ;6RQgs8GH{w^+O4HY_Gizx)v`6Dx)u&uE1bd-@9 zcXUd{8`D&eI0;N!bTi{w>bX?G9)=F6AL7bGiW@@C`HbCrrZ=yMm8Wss8*OH&EkGx% zFR2!JGHh6SsVFl8%_`#x`8QuTqh_o(%adS2# zwPhEi^dRl_K);z;f{_0Z%y_828{jLS2tCLm)urFQV=ywL7pu^2bl<*4mD&q$ye+fj zZ+yOJJ#RKYHOw3F+c1@Xb1}%VLq@Pb9f1bINOlR^k2XN9RxGUy8atD~gdQYH%`KNK z8%oMsx!q{m71iaKj{dUMK5pox0V#&o zpbhKi!zSZ~EXY|Oz95AnGM@rJ5QM6on~ozOGI7@SknGY|3~MC}M|UBUvl0IC{K)1M0?g>Vu>S7VPrbY93n zxv+sxuae&aE0H$?%ax^es*_$UUQtr2ItOh+;|9>iNp(>ElUIQ-R1h5ft&MKHhyYe- zVx(ge{*P&gN0P9xuuViqB_ZK9h$!qvv%O8inMb(2&FDPZ&2Y+-4Irpr-Ldkq0&r{R zz4Dm}Sm`#Sk{*T<;)A>X;qJT}lQMZ(sT@Ksq>Lh$OJG6WdZkR|@DK$jjIi(`rCv6x zbEe)kQbFk^I`(o@b``2txV~;&5OI?UT54WKBU9SMJ~1Wc1zw{R_?$;Q<7iMK|2Atq zGV5y4n8QO=Shz?50H|T>Mj^v@3u&3=@0sKe`2!q2yy1( zCtNGdrk;}W3eMP=$;?r@vfRX&47k{;J6EcS`fM*ugx|&=!WdTQQl+nr?y27@m&m<6 z|KRSUzl+F*S8umHG0kNY$C;tk$b9^$}BR0CfbY$OzCoJebotJ6c7lq8;AyDMa$R6du@!Vt4bTm_9q+f-X|3Ittk2m>xGjNCP{^iZ@|X}8mXef>Kx0Ef z40r8F_C514IFc~x5CjHpeG;t95KHXnINELxfY-+B0r<{`#NOvnqbMAkW*THozbm}7 z$!Tgv^mDa&#`ZDagSjf#Q0%(hynau!zP^h5OT`FaD1qg?u&eB#GgvE!czHcEoN?1bY%o%X}EV;hD*NscBmy7Ep?CG z>x^=qfGYR8S@C?8<2wmLtQiAy1&ytfz>uCZwa~=&1xqRdsowi)mY|yh$T`|_0)t2S z%Y?O%CJ=A80nflQvb@Fbo@f5)wGXo7wGa2SnDOPEd)!c>nYuAjO{SOgptJ z7>Sx*V)vb~#N==mFn|M%UZK6BNxpdz*uX_))nD+^?prbX2E_4NrSD^lM721 zA`^p@!{3{&VBK*a=_F@KriTKLL;qjs@XQf$aZ;D>@buezpnLC?wdkREu~ zqVO=tfWXlMhfQOUa2sEZzBT+G644Uj03kD=A87EX>tuuZL_Ckf((-O1RPwyxNA5py zW~bWu&^PN`aKqL2cmuiOaFR}}uh`}{xA>P8T5=rlsl=gl-7|?^k!36$h{^A2)Icy4 zV^H%opJlKJZfs{uYRjy)PK>EeE@G1;4^x%RVK28Q3o7P`1ON8;a@06g06P*9 zfja$9!R&^BJ-f!}Kjjb=u343^y)9iZw3rfeIq6@r>2WQM{ZU)C#wj@WokI~8>X{OV z1{J?XM^sby2>RYBpBXI@>52hYq5JQQ0qJbaOe+sZk1q&Ki`%;<;*_%#*_lEojY44s zZk4e9iIVF2vn)+J03S<)uS94z0D7sZV7ZY^X06UvD}|9x4zgPz;_E+W*B{%L+QLl& zP%?*wM%S9Zr7xA_h{0`$&cUAevBc+pqI}OS0#ra>a0Yh$15wL-xhgSFR8`T zJIbBcj#xoAW^>s`Vq-Tw+yV1T)~#J|MB4ib(~j^973~I|*8%5Y38(PufX~$iYb+2} zU5m_L6IkW=Wg64tD3ru?R$lBiVDT6ER_|}_&#r9+u16!loEw*vvKcmSRj?a=P zKq>X2!Rb_wmJ2;BIXy4pK@CV; zYt!PfbJE51Kt;Z1r;fVBfXo1O>c|6j8|Vva;MR|1;iq=el|y~1-o1}GDX6$$j)QkWD*y^}JgQZCu3GwW&IUUR|mn_&iKlN+SK z*w7j{lKfcQ5}W9xS?f%%W^&`J<-k7^Otw-o^Ea{kFRZ*OX~ePi0A{OtcNC)uEF7W4 zY@glg4b*x)C+9s*DJb7jP;Q^W6BsXo_<^HZqaI&mN{<7vTUq9%2q=VGxi^v2C4B?V zQNrfg-0>YfTa(;7k=b|7)4pP9qQr?6l9;xN_HnW*3r$EUL=apI!1cXzhiKCWu8W)c z2&ve`pY<--9?!`MKxpF;AN7|syXLT=ek$`iCG~}1ak+_`>9K5H&GZR-@BC=9^|_5+eXwp!PLUC5mxbQoQxu( zeO*?E*)Ye2_`5L+eW#mvvJuVpvKFhr?%!bkF6nTbvUM&iK#25@1h7k_a57+=d{g~T z!cG8+vBn(iG>10_%{+WVzRc}PbDW5Dvi9;=8ykl|OwxGhPeBEmdsV^G?UL74((Vv< zoW`oQ7HZJk_|JM+Q$4p_F!juz5$H@8l3jHVMdc~fIOEzI3u=!nf*C)~vvE}Owzeb5 z+(_uuh$_cefMC3}+C)brWGZ!I3o|e^iG>E}!2ESR?1ayJm8N*(MZbSFB$4*B=UmPk zUP0%R4>aMrUhJLwi&&O&TVWr`lTKe|fp+-f$gy(k{UvUJuzu7qr>pQw{-UFcgCh=I z*FRkxPwQF_l~zvAQH(%?cSpre0O?@75(T9pK<-N9i(R0mj%Rn9F8e-3Urj!~ zalz5z2+zm7XD#o@%nx6YS3oL7(6!A@$Dc;FG7uolct!|LTT~AHRfS~WF3;1)bU*Z*}=8N z<}(O>mHgFCVn`**zb~wdRa-kA{x{I;M}dQ5u#D>Zyo)7URBu9G601h%pOPtUFI=P= zQRv4~U}_}Re=kYrzYR8CC4>sEFT(9r#5joB}eXQEtR# zZforbt%@BTdck#PQS%z~!md0d!%zo$E$!v2#XS6bwGXqL_bZjYDnJmbD~QHXDvYMT zOdr0u&JVfr_222gv(OLpnW%T{Af?y3Ut)(wxLi+*nxN#GT>g_1uy~t5)d(rH0RrDh z?s?%cNx>SnBm}|7Lou)ghop z9_!%1K>a*AQgug|SA%GF(zU%~F(r@(9?Q#~Tfd%*2VNEtJC@qk{HZ`M3X&Wj{W10E zlr$LTCb_ZdB76b56_UWrSn|;yfT)pF8Xz9!Kqk3C;K;1mPgq9#4MER`(&C+YE$Hrk z+3XZLq`cYKO@G^x%Y))!AwK!1oaW*=;6XbTBIg{Lp+7JBoaD zwk{%HE}VC`8O9kAZQw4kSWf|RnEu(>F z;RD}0K^Ei7d)@^9TO9Zwz*omTdU__^Jhv{#=*VLGE)s{&Y<*p9K!~MbkBwazsCv02 zcDpB<1K%{cS}u)-%Tk-W-jy-_k*e7z%IrYX(?biX#K3)L=r6}(|Y!eWUG zPXj71{Lr5keY+RCHKaewkwxU@wJzb(b#-BBlK@kJsH>u@P?#+ScHg8cEb4;>9oK&T zkhc`|FkU2FR}t?JkZxv5-Y}1InbpM*`nLTqTmC;z)NCM7CQ{*@gC@da2vBO$Ge7B* zyaUynfMn|)YT#BEEPnza{65~UB_`XQdytS$<;_8Ytn0k#(7DGud!uw#ImZ^%Pm-KA zPG#Xl6qUq4?*#(5F#b|P7K(wo+Mh894`Px)gl75O2C9GCfE2xpLMu}|8WcEPhplIC zVcFMY4!b6Iyf5i^lJ|e^0^KVQEtX0Z0yU!wHY5Fp2tPKr|p;brL}oTURR;a>Fe;LcAZ~gt!kNGl87GY-N3e z5FbTxT;GFGtSf!i#s>Ih$=vyzxOS!6DtC^BVo$hQG!Adc^99T3%Z-=ZKim}mdyDOV z^so<#d{2~)jIaIm7^j5uMv9xxV?htNs7)So&TSPj1T5e?n27KYJGudSPw_FQHrI+E zJ9@u|LVGsv6Yp40!0yEllqG%E;$F9hTnVvaj8&4p;W?4cpBhZE{+;X|QsaUqh$cuB zre_8lJ&-K{0<;!YDlu^yq})+BZqK|5_6x~ecLg=Et2U0aI%mxM98+%2OBs}0m4JDR zNw8*C0m-?GOlxHlVT~{NoAYX4Vi+RJ$YzD5^)hL00WCbCa$i2HYs&-6<(p!-jg%d= z?BWF33Pv0t`|OrI8#mEbtWw01GhAgKl6dFziSrKkxOy$=2mu62m!Emj1~Mac@3XZp zwzT|Ic)xh^35t7hC3=|~Tn@+t)B$V6;Ob>607C^99x}EkjN*1BzIt{Xd=-dqrZG{p zKG(V84r-UL+5pOk-W^e&az;Zm91?~#;*$o(;5|l1dDA`Yq5s-S)U9RT=d;a-xRh6y zbeTA`(m!F`NoFQN@m59lDlD7Chm`C}_9T(g710XxDy6W_ge>s>W z0B*K}P2i53R$V?f@l z39Wxh;HGqfy}bo-x#^q#n$;7|`zl-k19mJ1t|1E)Q>i8fQTU)e*p*`re;0ZcvuGXp z#oHQluwRb^c;wmf$BUYwW&42{Y2Mk?!}S&C3fP8bHkjc>e1&=l(#J3K`3PJ*FWHi? z_pt?iQkYhQ;N@1ARi7Y-Eg}JEe31VHo*}TBFoMT+;2i& zhbS+CgT_#1h|n>Ks%}5TV4(3?U+I}UOBL{MjCO3Wvh=YB|2qEsQ=li=yg_s(dIu<@ zYzeDLG-di2-7`;dC6<)kfC(2<02D$~yQeF=zwl@2|RW`s0-_OF`9Dz^oLR_jpakloe(2?2s7=&@-j0AAejpy-97_XJd^gXHVHe> zk6P{cJB%Up1pCAN?JMu<)u)g(Q9OaZN{LA^Xb)n{&Ff+J)zwjB_4~;e1$?&AC>og7 z8FZt=N3-1wh^~MxgcQh#_uYvCx7}ZU51L9v=+G`Z63RL}T{Rd>``Y)vf<${?ELHNM zw3s}rsV6$3I>7KRcX>;NGZfJ`ghbuDCcF4>aYKe3Uux@tH|wnc^Rx1xWe`^9MAn`$ zp~Z{YV6A%?ulFn|Fw!2C0T6!FQjm$KUZ=()S&BArL@D3>B%EJe-aq#buS=)LaQ6r3 zO39pwYg01hg}EXBLgnMcg7U&9M)2!G1|7F{%h&ggwZXe~q3Q6ThRK2|E;{^vle`+p zm=HvQMf);QI2gbvE!uI>#?DSgf)0c3u1S@M!Hh*699W~b&tF!GW>7VZ zC0tr6uIoJg+N5Y-HTk9TPbG2}3!L7{nK)}yf8Sjt@#u*js|vy8Y_I7E;Iu@Gb`D<$ zpA}j*E;S!HAZ>f&KT0zDYTfeO6YPqypw&q3prSIRV5yTQ0WVI(aHI2)9-P1+LmrV( zbXFdAvC|%*dO9Z^!U1I})K))2vJu<=ArR=F8EOdn(mP~h`h{Jhq=kNBbW=qmj#Fl^E4}6yV|?oY39rGpCYdxKRodPPe4BQH^MhWlp4~ z$7MCy?VQRhdUTdTB^A9_ zh)+k$NlAPQ<4*uLO8rNf4oM}NMT~F`4!yp)3k>^+NwUKc1Jn7J&0m_#+_b`IY?mV} zH2)Bp#tGrGVhuzzHA7s>h83vSy=SyRT%>GMm?azJY7;Rj=83KBV!{WzjX&+E0WAb> z6DzN^fXZRhrR3zJ6>Y>JE~cug4EDOCL)}P)!xXjWqfana8_0Kah@~&p6y}T9`KFO{ z+zkBUIbJHPB9zvRSiSlwDuS{3l(G2mT>#fl)5*fg06wXNFM0cIUTKtv7<#(R0-pOb z@NPX2tuD1;COhHDIkwAyRIh2aUAR)`b@=rVAQYJnTe|E+Nbzq|=|VgFZ$eU|Mi6b+ z@ejRZcoU=FkcieP%WL6{UAEV7MyA7-oUPUHnH*q#gKKX|T$NmhU@_L{9MVwokrIp> z+NHiO>HAMzn2Va^=ga2M;V)y_MP^Xec#GRTk5HKj|C)j}G3?3w4hOMJ5kJmDHP;da zpsm};0yyl#yrDM?mru0yD1DPhjecJh6M)GZP5%_D1;R7Oc9iw;%y7{}2WOZPOse2N|8N_L`kzJ)5&?Lb_DSRGO8f zI^{IJN~{P$lPMu;LgOVWNTy*1w+y_KHX-c{sv;_C6e`3x4q{t4+b-^A;o1*Voz&S=OvH~41i4v>%)Qd7iat@ z>Id4VjD6C-F~@|C9@@VFV(IrEte%^3&HSoQ{}2s`%%CY;?S=|!uo_nI@6~^cPM3bx z6i5br2<$5CWPQLXpgDbX~(#>Fu8(KzU|UAS=YaYej8 zM(DZv7)jkXQu;}q0;Xl1nnN9zKx^w2^*11%&pG(T0zQNd zT*x3O&3Hdd0@pqV*Uc-JHT*Fw%yRt0gK4>z`w}n z$?m-97_Cu}0CxFk>3n#yLNIYMZLnXuE@)?*GyF;CE5_?zaT$g-b0&45z46m3M3-_# zoTQ`pHq7p*$awkaNy}Kpj&OW0Dn;6T=rcg4eRAEGvJX>FV5ASUHZ&-7*avFisu3-a zmH&TeRZX3rdS$lqK}m342*ucPw0{CG0Hb5ivyUn!N*RhANbyaFffXLG z7?^>N=?W3M=0a*wg$;{8N(lb};Z_eH#P2Nid_v@_U)j9Ha$o3-!(9m$e%-e3jrsJ}F=SNQg_P zLw)}9A0xVTVexBR2_AKBz~aQJ;k_ys?G#fqCZOX4E>ca%@YfAQ9@pwYy=j= zwBgMt46EIPO~xfsc$6E+>N%ZTM<$c8h$*F-3h4(3Hu$4`rK&|UOI!_SWs1#gYp84R z0L;c2AKwpoP2Ey!4+aV}W*NF&e?!bAlDJGrzC3l}sCi}oezHW>!Q*&x%Lbn(5XHj9 zd;DB-AdX`u4--wI*TMk}D4Sfj@lPdbQD=|A%_YYDBHbtMDU%Y5ecIguyCzX?x)I~L z_ny=_Q+MKq0i%g~o)PLuv3%s_lJ($R0JHE`DS8l`%aiZG?7)DlO|&pmvJEf;f)@lV z^43Fk+MJ$PC?6Ym5v&nV&Z-Ei_LDK|S)+SVGpTm8Hd*u~sF}oVqBZz&u|@cnnL37c zqwG$aCgnk@9a!Wf(=~ljNGUxa-A;2uW7m4n2W9^61k?Y{vCPjqR3vS1UM9~^a^eC+iJ*VG;Kv+*X|Zlj*ruhDe#Jt`?T3>>988)QC}?IVQCUn{-U!6# z0yQUgkqACV&-lj$=)51KZsF5$b7cD9J$4k)4lfusHZ$)dUuLeAlWaV&Bdftr)AI=K znPe}YgbNpqa+}zv?&v>hPEujjG`J>z93PozM6_wB%7AXf7qQ}@Qjs^HJ_^xi%n6Xm z-l!Sj`Z=yem(Bl?o8(oyw5yu<7uUYiGyxpNVhGz<1VV)F6lTjYnFt4BmLx3?H~lX( zI_=%ee8JY7+WfSWwetFLU`)G&1tI=>fwChKiSgc%_Cg1^3*LeqDF_UZs0q9|!zHIR z%nxo;whnR_M*_i)*V zg*e_B95jy}9Bo0BB1DwOaEyw!ja!vacNLj+p>*kihj7D4zQ6>KOb4PQD6zr(_9@s9 zM#@Krk&};s#psjiLxL)^pn6b4z2K!nGLgo)hzDktPF8BIosjg9l7^I6$#!R9^ z8)o-#9R5d(6AHhrxHip}N;;Ztjei{=LIIr%iM1mPp_^JA-v%m$$M>9Z;wdkWmhLGc z8v0JIl|>eLSrG}KkLp9yY@W{D(HEGJkQyc9M2*W4y5ckjM{#N?q%0l0h?qhffTPBK zM`L%XNKw{56&~k)G!{Ik?1zjQaiGU(k6V>h&5}S43oG2aIxn}AjM)UEPH~>Jh#JL2 zzE>rvme4fkwako`C@*f+km%jNkSXVx3G56zmM19(9$)n&SGmH?h_-}#N*%#R~*I$ z{00PR^R)r*M?oiKQdd0LzWVcGe_&ef%rmr2?fD(IX2b~-LFtM8@Uoe!a5EJTs55xuXsV(I&|;|60vMQex4{D z*?+S++bW@JKS_C|9=*exu?ZjrGl;^lsOnPCFInE@ndQ{P^}YVSro_35T7*VivKPLkhofFlCLjJBU?ooa z*n05mk^~Reh(^|m{F7z;UVDf&J4&I!s?k;{mGqj4Aq+vA~QPcwfwja)`J=HDw%LP5G^W|A~F&!R`mm zolvjI{O9iD{C4oPj9?cdPth94O_qx%Gm=`VQ9mDP#>M%8kL~L)L%ViAp9(u~GK~nN z@8zyEfi9!5X;|T@*j*Jd zUWVT5cVx)hC}QyRlsoN31?tvWXm!xR;ODbm?a!A6h!#qr_sT$E3}(Kc{Ww0XZo9j) z+3ltuWDQq`e!j$oei{PtabfDT(m$X@TjngQuP*cY#^&d!>mF5_>Rw)SWbkh7z@Gpe z9hOV7?tcNb^gtE&M>XKEhWOWtaKGM|QI-3xk@tJ(h+PAKLQx)ECyB0*Jom@% zA5-^LeeI#qUnAjnUTPC zS(*brfvInp=$4O86t6?M`}61i+g`xOlEgo|xH_@lkpJ#Kj@9OZc6lv|y@u8!|^yLeq+*E(>co($mYVZuJ6xgh@* z+|)~~ZCDRn&GXdH1dV{AVjBu%6>-JS7#J2%>LWQd z89J@Yj0*t9S%q}gaM6{L3ZJZorI>f;%cYI#6u~gYVjqMN>mb-4^OJ`})WCj^R@(bG z_HLz|fL_Y34Yc=~m|0EtDsqsw#I9-YePyYt1>5ki%v14P#&~|5t?3nY?i?X7@(11d z*`N;+GF{umu}owNj839M3}{pr{W7G=rkzK*GKNVUBC98?nzFO zjkm3ORJkcau z3}Xn4h5>SN-N5jMxH2rN?rJiFaoVy|81X*_KP97bzpC6Y^GYWqUiBG$ZA_%QW>J7k z@GfNqinq`nype}XY;98|r*Ayy;gKupq-MXCE}Uc8z%i7K)o4f-T^G$n-7Xvq&bn<- zVskFqObahf5dw@^cpYj?+p%W&vnoAqFSlCT`}LZfN|1w~>+tv(rZn|YY$a{k`sD^> z@jn&*N+oW4{H$$=L?j@#aPoZ` z7EmomGE33B6YVGB?8YlO$K}}amqe#vjzPK1S&*n`8!nvwH?JZD5x}{VzkVb4Skl-} z7GM;rze)U$4fGSfKVQ0TGkXs%)Y-<yT&|N{CfRwT2`oDnQrjwKG<8ckbYSHj1UOE`Gs|eHZq&1c+-Fxd8uU za6)VS-!?M5r(x30uGSMR*S!i$ZD85w0Lx!z&33{S+62p1*osCx!{-R|px@R$*k31q z2p(abF9Ou(U%y9wPiH7Lkl&Ns)5Bk5QGzco-@)Hn|NL+MS`F=2I@`Bi_&V1`==z-e z2iR`Ik$oUkXUFbQ<;-sVsb3IEml5Ms{}&LH)Hz8|T}5FIP9Y|yzZ~qGVxp{KLhNkJ z9PBK@!klbkq9QEJVk~@wJpbPio&RgBBV=J?PDKI-r2>#mw=;++Vvg+JcAsjF@L?L^ zeA(IfLs}5uki75xvBQ*AgV8l?sm=T)Q%9pu(D;a4tG z?WlhvPzn6+_qPT4&1bP9fTg=q74Fnsm>RV6E}Kda>~#0}Xi_@% diff --git a/main.tex b/main.tex index 3a9e2ed..466901b 100644 --- a/main.tex +++ b/main.tex @@ -38,222 +38,6 @@ \maketitle -\section{A Simple Computational Model} -What are Qubits? That's usually the first question getting addressed in any introduction to quantum computing, for a good reason. If we want to construct a new computational model, we first need to define the most basic building block: a single \emph{bit} of information. In classical computer science, the decision on how to define this smallest building block of information seems quite straight forward. We just take the most basic logical fact: either something is \emph{true} or \emph{false}, either 1 or 0. We have a name for an object holding this information: a \textbf{Bit}. Let's envision a computational model based on logical gates. Such a gate has one or more inputs and an output, with each either being \emph{true} or \emph{false}. Now consider a bit $b$ and a gate $f : \{0, 1\} \to \{0, 1\}$. We have a \emph{bit} of information $b$ and can get another \emph{bit} of information $b' \coloneqq f(b)$. In a final third step, we introduce a timescale, which means that now our \emph{bit} of information is time dependent. It can have different values at different times. To make it easier, we choose a discrete timescale. Our Bit $b$ has a distinct value on each point on the timescale. A value of a bit can only be changed in between time steps, by applying a logical gate to it: -$$ -\begin{matrix} -\text{Bit} & b &\stackrel{f_1}{\to} &b &\stackrel{f_2}{\to} &\cdots &\to &b &\stackrel{f_k}{\to} &b \\ -\text{time} & t_0 &\to &t_1 &\to &\cdots &\to &t_{k-1} &\to &t_k \\ -\end{matrix} -$$ +\input{content} -Of course, we need more than one bit of information, if we want to be able to perform meaningful computations. For this, we simply look at a list, vector or register of bits $\mathbf{b} \in \{0,1\}^n$ and modify our gates to be functions $f: \{0,1\}^n \to \{0,1\}^n$ mapping from bit vectors to bit vectors. - -Let's recap: We've now designed a computational model with just three components. -\begin{itemize} - \item A notion of Information: bits and registers. - \item A way of reasoning: logical gates. - \item A dimension to do the reasoning in: the timescale -\end{itemize} - -Notice how the system described above is fully deterministic. The state $\mathbf{b}_l$ of our system at time $t_l$ recursively defined by: -$$ -\mathbf{b}_l = \begin{cases} -f_l(\mathbf{b}_{l-1}) &\text{if} \quad l > 0 \\ -\mathbf{b}_0 &\text{otherwise} -\end{cases} -$$ -Or by the composition of all gate applications up to this point: $(f_l \circ f_{l-1} \circ \cdots \circ f_1)(\mathbf{b}_0)$. Actually, a composition of gates is also just another logical gate $F \coloneqq (f_l \circ f_{l-1} \circ \cdots \circ f_1) : \{0,1\}^n \to \{0,1\}^n$. If we are not interested in intermediate states, we can thus define our computation in the form of $\mathbf{b}_{\text{out}} \coloneqq F(\mathbf{b}_{\text{in}})`$, with $`F: \{0,1\}^n \to \{0,1\}^n$. - -\section{A Bit of Randomness} -\label{sec:probabilistic_model} - -\subsection{Single Bits in Superposition} -\label{sec:oneBitInSuperposition} -Many real world problems are believed to not be efficiently solvable on fully deterministic computers like the model described above (if $\mathbf{P} \neq \mathbf{NP}$). Fortunately, it turns out that if we allow for some randomness in our algorithms, we're often able to efficiently find solutions for such hard problems with sufficiently large success probabilities. Often times, the error probabilities can even be made exponentially small. For this reason, we also want to introduce randomness into our model. Algorithms or computational models harnessing the power of randomness are usually called \emph{probabilistic}. - -Again, we start with simple one bit systems. Later, we'll see how to expand the following methods to full bit vectors/registers. In the deterministic single bit model above, the state transition of a bit $b$ in step $t$ is defined by $f_t(b) \in \{0,1\}$. Now, the transition function (or gate) is simply allowed to flip an unfair coin and either output 0 or 1 for heads or tails respectively. Of course, the state of $b$ prior to the transition should have an effect on the computation. That is, why we allow different (unfair) coins for either $b = 0$ or $b = 1$. To distinguish between deterministic and probabilistic transition functions, we will denote the latter by $\ptrans(b) \in \{0,1\}$. Or to reformulate this idea: Depending on the value of $b$, the output of $\ptrans(b)$ follows one of two Bernoulli trials. There are 4 possible transitions with probabilities $p_{00}$, $p_{01}$, $p_{10}$ and $p_{11}$, where $p_{ij}$ is the probability of $b$ transitioning form $i$ to $j$. Obviously, $\sum_j p_{ij} = 1$ always needs to be satisfied. -$$ -\begin{aligned} - p_{00} \coloneqq P(\ptrans(b) = 0 \:|\: b = 0) \\ - p_{01} \coloneqq P(\ptrans(b) = 1 \:|\: b = 0) \\ - p_{10} \coloneqq P(\ptrans(b) = 0 \:|\: b = 1) \\ - p_{11} \coloneqq P(\ptrans(b) = 1 \:|\: b = 1) \\ -\end{aligned} -$$ -Note that we regain our deterministic transition function $f$ from $\ptrans$, if we restrict the probabilities: $p_{00}, p_{10} \in \{0,1\}$. At this point, we can randomize our computation from above as follows: -$$ -\begin{matrix} -\text{Bit} & b &\stackrel{\ptrans_1}{\to} &b &\stackrel{\ptrans_2}{\to} &\cdots &\to &b &\stackrel{\ptrans_k}{\to} &b \\ -\text{time} & t_0 &\to &t_1 &\to &\cdots &\to &t_{k-1} &\to &t_k \\ -\end{matrix} -$$ -Let's have a look at the state of $b$ after the first transition. In the deterministic model, we know with certainty that at this point in time, $b$ will have the value $f_1(b)$. In a probabilistic model, we can not predict the value of $b$ at time $t_1$ with 100\% certainty. In the terminology of probability theory, a probabilistic state transition or even the whole computation would be an \emph{experiment} and the value of bit $b$ at time $t$ would be described by a \emph{random variable} $X_t$. Random variables are defined to take a value out of a set of predefined value options $\Omega = \{\omega_1, \dots, \omega_n\}$ with certain probabilities $p_1,\dots,p_n$ for each value. Only after we perform the experiment and \emph{observe} its outcome, we get a specific value $x_t$ of the random variable $X_t$. We say that $x_t$ is a \emph{random sample} or realization of $X_t$. If we don't want to or can't sample (perform) the experiment, we still could compute the \emph{expected value} $E(X_t) = \sum_i p_i\omega_i$ (if $\Omega$ mathematically allows for such operations). - -Let's return to our example: Just as in the deterministic case we would like to predict the state of $b$ after the transition $\ptrans_t$. For this we want to calculate the expected state of b at time $t$. Let $p^t_{ij}$ be the transition probabilities of $\ptrans_t$, furthermore $p^t_{b=x}$ denotes the probability of $b$ being in state $x$ at time $t$. Now we have: -\begin{gather} - E\parens*{\ptrans_t(b)} = p^t_{b=0} \cdot \mathbf{0} + p^t_{p=1} \cdot \mathbf{1} \label{eq:exp_state_single_bit}\\ -p^t_{b=x} = \begin{cases} - p^t_{0x} \cdot p^{t-1}_{b=0} + p^t_{1x} \cdot p^{t-1}_{b=1} & ,t > 0 \\ - 0, 1 & \text{otherwise} -\end{cases} -\end{gather} -It is important to note, that $\mathbf{0}$ and $\mathbf{1}$ in \cref{eq:exp_state_single_bit} are not the scalar values of $b$. They define abstract objects denoting the fact that $b$ is in state $0$ or $1$, so they are just arbitrary labels. For instance, same states could also be labeled $\{\mathbf{T}, \mathbf{F}\}$ or $\{\top, \bot\}$. But if $\mathbf{0}$ and $\mathbf{1}$ are some kind of abstract object and not scalar value, how can \cref{eq:exp_state_single_bit} be evaluated? As of now it can't. Later we will define representations of these abstract stats, which are closed under addition and scalar multiplication, making \cref{eq:exp_state_single_bit} also (a representation of) an abstract state. - -From \cref{eq:exp_state_single_bit}, we will now derive a standard form of our random bit $b$. We don't view $b$ as being either in state $\mathbf{0}$ OR $\mathbf{1}$ anymore. From now on, we think of $b$ as being in $\mathbf{0}$ AND $\mathbf{1}$ simultaneously with certain probabilities $p_{b=0}$ and $p_{b=1}$, The one bit system $b$ is in a \emph{superposition} of two \emph{basis states} $\mathbf{0}$ and $\mathbf{1}$: -$$ -b = p_0 \mathbf{0} + p_1 \mathbf{1} \quad , p_0 + p_1 = 1 -$$ -Until now, we have not given an explicit definition of the transition function $\ptrans$, apart from describing its effect. This is partly the case because we were lacking a formalism to describe uncertain states, so there was no direct way to describe the output of $\ptrans\parens{b}$. The other big problem would have been the question of how to handle an uncertain input state. Building on the superposition formalism $\ptrans\parens*{b}$ can be defined as a linear function: -\begin{align*} - \ptrans(b) &= \ptrans\parens*{p_0 \mathbf{0} + p_1 \mathbf{1}} \\ - &= p_0\ptrans(\mathbf{0}) + p_1\ptrans(\mathbf{1}) \\ - &= p_0\parens*{p_{00}\mathbf{0} + p_{01}\mathbf{1}} + p_1\parens*{p_{10}\mathbf{0} + p_{11}\mathbf{1}} \\ - &= \underbrace{\parens*{p_0 p_{00} + p_1 p_{10}}}_{\eqqcolon p'_0}\mathbf{0} + - \underbrace{\parens*{p_0 p_{01} + p_1 p_{11}}}_{\eqqcolon p'_1}\mathbf{1} \\ -\end{align*} -A simple calculation verifies that -\begin{align*} - p'_0 + p'_1 &= \parens*{p_0 p_{00} + p_1 p_{10}} + \parens*{p_0 p_{01} + p_1 p_{11}} \\ - &= p_0\underbrace{\parens*{p_{00} + p_{01}}}_{= 1} + p_1\underbrace{\parens*{p_{10} + p_{11}}}_{= 1} = p_0 + p_1 = 1 -\end{align*} -and thus $\ptrans$ preserves valid superpositions, which finally makes predictions of the full computation through all steps possible. In line with the fully deterministic model the state of $b$ at time $t$ can be described by: -\begin{equation} -\label{eq:deterministic_register_at_time_t} -\begin{aligned} - b_t &= \begin{cases} - \ptrans_t\parens*{b_{t-1}} &\text{if} \quad t > 0 \\ - b_0 \in \{\mathbf{0}, \mathbf{1}\} &\text{otherwise} \\ - \end{cases} \\ - &= \parens*{\ptrans_t \circ \ptrans_{t-1} \circ \cdots \circ \ptrans_1}(b_0) -\end{aligned} -\end{equation} - -\subsection{Collapsing Superpositions} -\label{sec:superposition} -Extending this formalism to bit registers is actually fairly straight forward. Systems can be in superposition of arbitrary many basis states. But first, it is time to talk a bit more about the concept of superposition. -\begin{definition}[Superposition of Probabilities] - If $\mathbf{E} \coloneqq \parensc*{E_1, E_2, \dots, E_n}$ is the set of all possible outcomes of an experiment, then a superposition of probable outcomes is defined by: - \begin{equation} - E \coloneqq \sum_{i=1}^n p_i E_i \quad \text{with}\:\: p_i = P\parens*{E_i} \:\text{and}\:\: \sum_{i=1}^n p_i = 1 - \end{equation} - The states (outcomes) in $\mathbf{E}$ are called basis states (outcomes). -\end{definition} - -As mentioned above, a superposition can not immediately be evaluated. It rather should be seen as a mathematical object holding incomplete knowledge about a certain property of some (stochastic) process, described by a random distribution $(p_i)_{i=1}^n$. Too actually evaluate a superposition, the missing information needs to be filled in by some kind of extra process e.g. performing an experiment, measuring an observable. After this extra information is filled in the property under consideration is fully known and the superposition \emph{collapses} to one of the actually realizable outcomes in $\mathbf{E}$. In this model a system can be in an uncertain state which only can be made concrete by some external influence like measuring an observable. This sounds quite abstract and especially the fact that a measurement could alter the state of a real physical system seems quite counterintuitive, but we will later see that this principle is actually grounded in reality. - -Let's consider the experiment of rolling a dice. Of course, for the observable \emph{number of eyes} the expected outcomes are $\mathbf{E} = \parensc{1, 2, \dots, 6}$. While the dice is still in the cup and in the state of being shaken number of eyes can not be reasonably determined, even if a transparent cup is being used. The dice is in a superposition $E = \sum_{i=1}^6 \frac{1}{6} \mathbf{i}$ of showing all numbers of eyes 1 to 6 with uniform probability $\frac{1}{6}$. In order to determine the number of eyes thrown, the dice needs to rest on a solid base, such that one side is evidently showing up. So by \emph{throwing the dice} we interfere with the system by stopping to shake the cup and placing the dice on a solid base (table). With the dice now laying on the table it is clearly showing only one number of eyes. The superposition collapsed! - -\begin{definition}[Collapse of Superposition] - A state in superposition of basis states $\mathbf{E} = \parensc*{E_1, E_2, \dots, E_n}$ can be evaluated by collapsing it on one of its basis states. This is done by a measuring operator - \begin{equation} - M_{\mathbf{E}}\parens*{\sum_{i=1}^n p_i E_i} \coloneqq E_i \quad\: \text{with probability}\:\: p_i - \end{equation} -\end{definition} - -\begin{remark} - The basis states are not unique. To see this, consider the experiment of rolling a dice. If the observable is \emph{the number of eyes} we have the basis states $\mathbf{E}_{\text{eye}} = \parensc*{\mathbf{i}}_{i=1}^6$. On the other hand, if the measurement is only supposed to distinguish between \emph{even or odd} numbers of eyes we have $\mathbf{E}_{\text{parity}} = \parensc*{\text{even}, \text{odd}}$. The corresponding measuring operators are $M_{\mathbf{E_{\text{eye}}}}$ and $M_{\mathbf{E_{\text{parity}}}}$. -\end{remark} - -\subsection{Bit Registers in Superposition} -Extending the probabilistic one-bit model from \cref{sec:oneBitInSuperposition} to bit registers is almost trivial given the definitions from \cref{sec:superposition}. A $n$-bit register can be in $N = 2^n$ possible states, giving rise to a superposition of $N$ basis states for probabilistic register states. -\begin{definition} - \label{def:nbitRegister} - The state of a $n$-bit register in a probabilistic computation is defined by a superposition of all possible basis states $\mathbf{B} = \parensc*{\mathbf{0}, \mathbf{1}}^n = \parensc*{\mathbf{0}, \mathbf{1}, \dots, \mathbf{N-1}}$. - \begin{equation} - \mathbf{b} \coloneqq \sum_{i=0}^{N-1} p_i \cdot \mathbf{i} \quad \:\text{with}\:\: P\parens*{\mathbf{b} = \mathbf{i}} = p_i - \end{equation} -\end{definition} -\begin{remark} - It should be noted that the number representation $\parensc*{\mathbf{i}}_{i=0}^{N-1}$ is defined as the bit string $\{\mathbf{0}, \mathbf{1}\}^n$ in a base of 10. So it is just a shorter label for the state of a $n$-bit register and NOT a scalar value. -\end{remark} -Similar to \cref{sec:oneBitInSuperposition} the transition function $\ptrans$ can be defined on its effect on basis states. For each transition the probabilities of transitioning from basis state $\mathbf{i}$ to basis state $\mathbf{j}$ must be defined. The mapping between states in superposition will then be defined linearly. -\begin{definition} - \label{def:probabilisticTransitionFunction} - Let $\mathbf{b} = \sum_{i=0}^{N-1} p_i \mathbf{i}$ be a $n$-bit register as defined in \cref{def:nbitRegister} and let $p_{\mathbf{ij}}$ be the probability of transitioning form basis state $\mathbf{i}$ to basis state $\mathbf{j}$, then the transition function is defined by: - \begin{equation} - \label{eq:ptrans_on_register} - \ptrans\parens*{\mathbf{b}} \coloneqq \sum_{i=0}^{N-1} p_i \ptrans(\mathbf{i}) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} p_i p_{ij} \mathbf{j} - \end{equation} -\end{definition} - -\begin{theorem} - \label{thm:superpositionsClosedUnderProbabilisticTransition} - A transition function as defined by \cref{def:probabilisticTransitionFunction} maps superposition to valid superpositions. -\end{theorem} -\begin{proof} - Let $\ptrans$ be a probabilistic transition function and let $\mathbf{b}$ a register state in superposition. By \cref{def:probabilisticTransitionFunction} we get $\ptrans(\mathbf{b}) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} p_i p_{ij} \mathbf{j}$ a simple reordering leads to - $$ - \ptrans(\mathbf{b}) = \sum_{j=0}^{N-1} \parens*{\sum_{i=0}^{N-1} p_i p_{ij}} \mathbf{j} - $$ - Obviously, $p_i p_{ij} = P\parens{\mathbf{b} = \mathbf{i}} P\parens{\ptrans(\mathbf{b}) = \mathbf{j} \:|\: \mathbf{b} = \mathbf{i}}$. It follows directly from the law of total probability that $\sum_{j=0}^{N-1}\sum_{i=0}^{N-1} p_i p_{ij} = \sum_{j=0}^{N-1} P\parens{\ptrans(\mathbf{b}) = \mathbf{j}} = 1$ -\end{proof} -A direct consequence of \cref{thm:superpositionsClosedUnderProbabilisticTransition} is that the space of probabilistic transition functions is also closed under composition. In accordance to \cref{eq:deterministic_register_at_time_t} the state of a register $\mathbf{b}$ in a probabilistic computation at time $t$ can be described by: -\begin{equation}\begin{aligned} - \mathbf{b}_t &= \begin{cases} - \ptrans_t\parens*{\mathbf{b}_{t-1}} &\text{if}\:\: t > 0 \\ - \mathbf{b}_0 \in \parensc*{\mathbf{0}, \mathbf{1}}^N &\text{otherwise} - \end{cases} \\ - &= \parens*{\ptrans_t \circ \ptrans_{t-1} \circ \cdots \circ \ptrans_1}(\mathbf{b}_0) -\end{aligned}\end{equation} - -\section{Introducing: Linear Algebra} -The definitions of \cref{sec:probabilistic_model} fully describe a probabilistic computational model. Unfortunately, working with them can be quite cumbersome. This section will introduce an algebraic apparatus based on the definitions from above, with many helpful tools to describe computations and state evolutions. As some terminology and especially the linear properties of \cref{def:probabilisticTransitionFunction} already suggest the mathematical framework of choice will be linear algebra. Let's start by assessing the components of the model described above. We have: -\begin{itemize} - \item States (in superposition) - \item State transitions - \item Measurements (collapse of superposition) -\end{itemize} -As it turns out, all three components and their interactions can be expressed in the language of linear algebra. Readers familiar with that field of mathematics probably already noticed that $\ptrans$ is a linear function and the space of states in superposition looks a lot like a vector space. - -\subsection{The State Space} -The defining property of a superposition is the probability distribution of its basis states. Given an enumeration all basis states the superposition is fully defined by the list of probabilities $\parens{p_0, p_1, \dots, p_{N-1}}$. -\begin{definition}[State Spaces of Probabilistic Computations] - Given a state basis $\mathbf{B}$ of a $n$-bit register, the state space of probabilistic computations on this register is defined as: - \begin{equation*} - \mathbf{B}^n \coloneqq \parensc*{\mathbf{b} \sum_{i=0}^{N-1} p_i \mathbf{i} \:\middle|\: p_i \in \R_+ \:,\: \sum_{i=0}^{N-1} p_i = 1} - \end{equation*} -\end{definition} - -\begin{definition} - The coordinate map is a linear function $\Psi_{\mathbf{B}} : \mathbf{B}^{n} \to \R^N$ mapping the state space to $\R^N$: - \begin{equation*} - \forall \mathbf{b} \in \mathbf{B}^n :\quad \Psi_{\mathbf{B}}\parens{\mathbf{b}} = \parens{p_0, p_1, \dots, p_{N-1}}^T = \sum_{i=1}^N p_i \mathbf{e}_i - \end{equation*} - Often $\Psi_{\mathbf{B}}(\mathbf{b})$ is called the coordinate vector of $\mathbf{b}$ with respect to the basis $\mathbf{B}$. -\end{definition} - -\begin{lemma} - \label{thm:state_space_unit_sphere_surface_isomorphism} - The state space of probabilistic computations is isomorphic to the surface of the unit sphere in the first quadrant of $\R^N$. - \begin{equation*} - \mathbf{B}^n \cong \parensc*{\mathbf{v} \in \R_+^N \:\middle|\: \norm{\mathbf{v}} = 1} - \end{equation*} -\end{lemma} - -\begin{proof} - For an arbitrary state $\mathbf{b}$ the coordinate vector $\Psi_{\mathbf{B}}(b) = \mathbf{v}$ is the direction of a ray in the first quadrant of $\R^N$ starting from the origin. Rescaling $\mathbf{v}$ results in the point where this ray intersects the unit sphere $\varphi(\mathbf{v}) = \frac{\mathbf{v}}{\norm{\mathbf{v}}} = \mathbf{v}'$ which can be inverted by $\varphi^{-1}(\mathbf{v}') = \frac{\mathbf{v}'}{\norm{\mathbf{v}'}_1} = \mathbf{v}$. Thus, $\varphi \circ \varphi^{-1} = \varphi^{-1} \circ \varphi = \text{id}$ and - $$ - \Psi_{\mathbf{B}}\parens*{\mathbf{B}^n} = \parensc{\mathbf{v} \in \R_+^N \:|\: \norm{\mathbf{v}}_1 = 1}\cong \parensc{\mathbf{v} \in \R_+^N \:|\: \norm{\mathbf{v}} = 1} - $$ -\end{proof} - -\subsection{Transition Matrices} -It follows directly from \cref{eq:exp_state_single_bit} that $\ptrans : \spanspace\parens{\mathbf{B}} \to \spanspace\parens{\mathbf{B}}$ is a linear transformation on the space spanned by state basis $\mathbf{B}$ and \cref{thm:superpositionsClosedUnderProbabilisticTransition} even states that $\ptrans : \mathbf{B}^n \to \mathbf{B}^n$ and $\mathbf{B}^n$ is closed under $\ptrans$. It is well known, that the space of all linear maps $\Hom_{\R}\parens{V,W}$ between two finite-dimensional real vector spaces $V$ and $W$ is isomorphic to $\R^{\parens{\dim(W), \dim(V)}}$. So, there must exist an isomorphism between transition functions $\ptrans$ and $\R^{\parens{N,N}}$. -\begin{theorem}%[see \cite{Knabner}] - \label{thm:probabilistic_matrix_representation} - Let $\mathbf{B} = \parensc{\mathbf{b}_i}_{i=1}^N$ be a $n$-bit state basis and $\mathscr{B} = \parensc{\mathbf{v}_j}_{j=1}^N$ a basis of $\R^N$, then there exists a matrix $A = (a_{ij}) \in \R^{\parens{N,N}}$ such that - \begin{itemize} - \item $\forall \mathbf{b}_i \in \mathbf{B} :\quad \ptrans(\mathbf{b}_i) = \sum_{j=1}^N a_{ji} \mathbf{v}_j$ - \item $\ptrans\parens*{\sum_{i=1}^N x_i \mathbf{b}_i} = \sum_{j=1}^N y_j \mathbf{v}_j \iff A\parens{x_1, x_2, \dots, x_N}^T = \parens{y_1, y_2, \dots, y_N}^T$ - \end{itemize} -\end{theorem} - -\begin{remark} - Usually it is custom to choose the standard basis $\parensc{\mathbf{e}_i}_{i=1}^N$ for $\R^N$, then \cref{thm:probabilistic_matrix_representation} describes how $A$ can be used to describe how $\ptrans$ affects basis states in coordinate space. The $j$-th column vector $A\mathbf{e}_j = \mathbf{a}^j = \parens{a_{1j}, a_{2j}, \dots, a_{Nj}}^T$ represents the probability distribution of $\ptrans(\mathbf{b_j})$. It follows that $a_{ij} = p_{ji}$, with $p_{ji}$ being the probability of transitioning from $\mathbf{b}_j$ to $\mathbf{b}_i$. Consequently, $A = P^T$ with $P = (p_{ij})$. -\end{remark} - -\subsection{Measurements} - -\section{Making it Quantum} \end{document}