
A Brief Introduction to Quantum
Computation

Tom Krüger

January 31, 2023

1 A Simple Computational Model
What are Qubits? That’s usually the first question getting addressed in any introduction
to quantum computing, for a good reason. If we want to construct a new computational
model, we first need to define the most basic building block: a single bit of information.
In classical computer science, the decision on how to define this smallest building block
of information seems quite straight forward. We just take the most basic logical fact:
either something is true or false, either 1 or 0. We have a name for an object holding this
information: a Bit. Let’s envision a computational model based on logical gates. Such
a gate has one or more inputs and an output, with each either being true or false. Now
consider a bit b and a gate f : {0, 1} → {0, 1}. We have a bit of information b and can
get another bit of information b′ := f(b). In a final third step, we introduce a timescale,
which means that now our bit of information is time dependent. It can have different
values at different times. To make it easier, we choose a discrete timescale. Our Bit b
has a distinct value on each point on the timescale. A value of a bit can only be changed
in between time steps, by applying a logical gate to it:

Bit b
f1→ b

f2→ · · · → b
fk→ b

time t0 → t1 → · · · → tk−1 → tk

Of course, we need more than one bit of information, if we want to be able to perform
meaningful computations. For this, we simply look at a list, vector or register of bits
b ∈ {0, 1}n and modify our gates to be functions f : {0, 1}n → {0, 1}n mapping from
bit vectors to bit vectors.

Let’s recap: We’ve now designed a computational model with just three components.

• A notion of Information: bits and registers.

• A way of reasoning: logical gates.

• A dimension to do the reasoning in: the timescale

1

Notice how the system described above is fully deterministic. The state bl of our
system at time tl recursively defined by:

bl =
{

fl(bl−1) if l > 0
b0 otherwise

Or by the composition of all gate applications up to this point: (fl ◦ fl−1 ◦ · · · ◦ f1)(b0).
Actually, a composition of gates is also just another logical gate F := (fl ◦fl−1 ◦· · ·◦f1) :
{0, 1}n → {0, 1}n. If we are not interested in intermediate states, we can thus define our
computation in the form of bout := F (bin)‘, with ‘F : {0, 1}n → {0, 1}n.

2 A Bit of Randomness
2.1 Single Bits in Superposition
Many real world problems are believed to not be efficiently solvable on fully deterministic
computers like the model described above (if P ̸= NP). Fortunately, it turns out that
if we allow for some randomness in our algorithms, we’re often able to efficiently find
solutions for such hard problems with sufficiently large success probabilities. Often
times, the error probabilities can even be made exponentially small. For this reason, we
also want to introduce randomness into our model. Algorithms or computational models
harnessing the power of randomness are usually called probabilistic.

Again, we start with simple one bit systems. Later, we’ll see how to expand the
following methods to full bit vectors/registers. In the deterministic single bit model
above, the state transition of a bit b in step t is defined by ft(b) ∈ {0, 1}. Now, the
transition function (or gate) is simply allowed to flip an unfair coin and either output
0 or 1 for heads or tails respectively. Of course, the state of b prior to the transition
should have an effect on the computation. That is, why we allow different (unfair)
coins for either b = 0 or b = 1. To distinguish between deterministic and probabilistic
transition functions, we will denote the latter by δ(b) ∈ {0, 1}. Or to reformulate this
idea: Depending on the value of b, the output of δ(b) follows one of two Bernoulli trials.
There are 4 possible transitions with probabilities p00, p01, p10 and p11, where pij is the
probability of b transitioning form i to j. Obviously, ∑j pij = 1 always needs to be
satisfied.

p00 := P (δ(b) = 0 | b = 0)
p01 := P (δ(b) = 1 | b = 0)
p10 := P (δ(b) = 0 | b = 1)
p11 := P (δ(b) = 1 | b = 1)

Note that we regain our deterministic transition function f from δ, if we restrict the
probabilities: p00, p10 ∈ {0, 1}. At this point, we can randomize our computation from
above as follows:

Bit b
δ1→ b

δ2→ · · · → b
δk→ b

time t0 → t1 → · · · → tk−1 → tk

2

Let’s have a look at the state of b after the first transition. In the deterministic model,
we know with certainty that at this point in time, b will have the value f1(b). In a
probabilistic model, we can not predict the value of b at time t1 with 100% certainty. In
the terminology of probability theory, a probabilistic state transition or even the whole
computation would be an experiment and the value of bit b at time t would be described
by a random variable Xt. Random variables are defined to take a value out of a set of
predefined value options Ω = {ω1, . . . , ωn} with certain probabilities p1, . . . , pn for each
value. Only after we perform the experiment and observe its outcome, we get a specific
value xt of the random variable Xt. We say that xt is a random sample or realization of
Xt. If we don’t want to or can’t sample (perform) the experiment, we still could compute
the expected value E(Xt) = ∑

i piωi (if Ω mathematically allows for such operations).
Let’s return to our example: Just as in the deterministic case we would like to predict

the state of b after the transition δt. For this we want to calculate the expected state of
b at time t. Let pt

ij be the transition probabilities of δt, furthermore pt
b=x denotes the

probability of b being in state x at time t. Now we have:

E(δt(b)) = pt
b=0 · 0 + pt

p=1 · 1 (1)

pt
b=x =

{
pt

0x · pt−1
b=0 + pt

1x · pt−1
b=1 , t > 0

0, 1 otherwise
(2)

It is important to note, that 0 and 1 in eq. (1) are not the scalar values of b. They define
abstract objects denoting the fact that b is in state 0 or 1, so they are just arbitrary
labels. For instance, same states could also be labeled {T, F} or {⊤, ⊥}. But if 0 and 1
are some kind of abstract object and not scalar value, how can eq. (1) be evaluated? As
of now it can’t. Later we will define representations of these abstract stats, which are
closed under addition and scalar multiplication, making eq. (1) also (a representation
of) an abstract state.

From eq. (1), we will now derive a standard form of our random bit b. We don’t view
b as being either in state 0 OR 1 anymore. From now on, we think of b as being in 0
AND 1 simultaneously with certain probabilities pb=0 and pb=1, The one bit system b is
in a superposition of two basis states 0 and 1:

b = p00 + p11 , p0 + p1 = 1

Until now, we have not given an explicit definition of the transition function δ, apart
from describing its effect. This is partly the case because we were lacking a formalism to
describe uncertain states, so there was no direct way to describe the output of δ(b). The
other big problem would have been the question of how to handle an uncertain input

3

state. Building on the superposition formalism δ(b) can be defined as a linear function:

δ(b) = δ(p00 + p11)
= p0δ(0) + p1δ(1)
= p0(p000 + p011) + p1(p100 + p111)
= (p0p00 + p1p10)︸ ︷︷ ︸

=:p′
0

0 + (p0p01 + p1p11)︸ ︷︷ ︸
=:p′

1

1

A simple calculation verifies that

p′
0 + p′

1 = (p0p00 + p1p10) + (p0p01 + p1p11)
= p0 (p00 + p01)︸ ︷︷ ︸

=1

+p1 (p10 + p11)︸ ︷︷ ︸
=1

= p0 + p1 = 1

and thus δ preserves valid superpositions, which finally makes predictions of the full
computation through all steps possible. In line with the fully deterministic model the
state of b at time t can be described by:

bt =
{

δt(bt−1) if t > 0
b0 ∈ {0, 1} otherwise

= (δt ◦ δt−1 ◦ · · · ◦ δ1)(b0)
(3)

2.2 Collapsing Superpositions
Extending this formalism to bit registers is actually fairly straight forward. Systems can
be in superposition of arbitrary many basis states. But first, it is time to talk a bit more
about the concept of superposition.

Definition 1 (Superposition of Probabilities). If E := {E1, E2, . . . , En} is the set of
all possible outcomes of an experiment, then a superposition of probable outcomes is
defined by:

E :=
n∑

i=1
piEi with pi = P (Ei) and

n∑
i=1

pi = 1 (4)

The states (outcomes) in E are called basis states (outcomes).

As mentioned above, a superposition can not immediately be evaluated. It rather
should be seen as a mathematical object holding incomplete knowledge about a certain
property of some (stochastic) process, described by a random distribution (pi)n

i=1. Too
actually evaluate a superposition, the missing information needs to be filled in by some
kind of extra process e.g. performing an experiment, measuring an observable. After
this extra information is filled in the property under consideration is fully known and the
superposition collapses to one of the actually realizable outcomes in E. In this model a

4

system can be in an uncertain state which only can be made concrete by some external
influence like measuring an observable. This sounds quite abstract and especially the
fact that a measurement could alter the state of a real physical system seems quite
counterintuitive, but we will later see that this principle is actually grounded in reality.

Let’s consider the experiment of rolling a dice. Of course, for the observable number
of eyes the expected outcomes are E = {1, 2, . . . , 6}. While the dice is still in the cup
and in the state of being shaken number of eyes can not be reasonably determined, even
if a transparent cup is being used. The dice is in a superposition E = ∑6

i=1
1
6 i of showing

all numbers of eyes 1 to 6 with uniform probability 1
6 . In order to determine the number

of eyes thrown, the dice needs to rest on a solid base, such that one side is evidently
showing up. So by throwing the dice we interfere with the system by stopping to shake
the cup and placing the dice on a solid base (table). With the dice now laying on the
table it is clearly showing only one number of eyes. The superposition collapsed!

Definition 2 (Collapse of Superposition). A state in superposition of basis states E =
{E1, E2, . . . , En} can be evaluated by collapsing it on one of its basis states. This is done
by a measuring operator

ME

(
n∑

i=1
piEi

)
:= Ei with probability pi (5)

Remark 1. The basis states are not unique. To see this, consider the experiment of rolling
a dice. If the observable is the number of eyes we have the basis states Eeye = {i}6

i=1.
On the other hand, if the measurement is only supposed to distinguish between even
or odd numbers of eyes we have Eparity = {even, odd}. The corresponding measuring
operators are MEeye and MEparity .

2.3 Bit Registers in Superposition
Extending the probabilistic one-bit model from section 2.1 to bit registers is almost
trivial given the definitions from section 2.2. A n-bit register can be in N = 2n possible
states, giving rise to a superposition of N basis states for probabilistic register states.

Definition 3. The state of a n-bit register in a probabilistic computation is defined by
a superposition of all possible basis states B = {0, 1}n = {0, 1, . . . , N − 1}.

b :=
N−1∑
i=0

pi · i with P (b = i) = pi (6)

Remark 2. It should be noted that the number representation {i}N−1
i=0 is defined as the

bit string {0, 1}n in a base of 10. So it is just a shorter label for the state of a n-bit
register and NOT a scalar value.

Similar to section 2.1 the transition function δ can be defined on its effect on basis
states. For each transition the probabilities of transitioning from basis state i to basis
state j must be defined. The mapping between states in superposition will then be
defined linearly.

5

Definition 4. Let b = ∑N−1
i=0 pii be a n-bit register as defined in definition 3 and let pij

be the probability of transitioning form basis state i to basis state j, then the transition
function is defined by:

δ(b) :=
N−1∑
i=0

piδ(i) =
N−1∑
i=0

N−1∑
j=0

pipijj (7)

Theorem 1. A transition function as defined by definition 4 maps superposition to valid
superpositions.

Proof. Let δ be a probabilistic transition function and let b a register state in super-
position. By definition 4 we get δ(b) = ∑N−1

i=0
∑N−1

j=0 pipijj a simple reordering leads
to

δ(b) =
N−1∑
j=0

(
N−1∑
i=0

pipij

)
j

Obviously, pipij = P (b = i)P (δ(b) = j | b = i). It follows directly from the law of total
probability that ∑N−1

j=0
∑N−1

i=0 pipij = ∑N−1
j=0 P (δ(b) = j) = 1

A direct consequence of theorem 1 is that the space of probabilistic transition functions
is also closed under composition. In accordance to eq. (3) the state of a register b in a
probabilistic computation at time t can be described by:

bt =
{

δt(bt−1) if t > 0
b0 ∈ {0, 1}N otherwise

= (δt ◦ δt−1 ◦ · · · ◦ δ1)(b0)
(8)

3 Introducing: Linear Algebra
The definitions of section 2 fully describe a probabilistic computational model. Unfor-
tunately, working with them can be quite cumbersome. This section will introduce an
algebraic apparatus based on the definitions from above, with many helpful tools to de-
scribe computations and state evolutions. As some terminology and especially the linear
properties of definition 4 already suggest the mathematical framework of choice will be
linear algebra. Let’s start by assessing the components of the model described above.
We have:

• States (in superposition)

• State transitions

• Measurements (collapse of superposition)

As it turns out, all three components and their interactions can be expressed in the
language of linear algebra. Readers familiar with that field of mathematics probably
already noticed that δ is a linear function and the space of states in superposition looks
a lot like a vector space.

6

3.1 The State Space
The defining property of a superposition is the probability distribution of its basis states.
Given an enumeration all basis states the superposition is fully defined by the list of
probabilities (p0, p1, . . . , pN−1).

Definition 5 (State Spaces of Probabilistic Computations). Given a state basis B of a
n-bit register, the state space of probabilistic computations on this register is defined as:

Bn :=
{

b =
N−1∑
i=0

pii
∣∣∣∣∣ pi ∈ R+ ,

N−1∑
i=0

pi = 1
}

Definition 6. The coordinate map is a linear function ΨB : Bn → RN mapping the
state space to RN :

∀b ∈ Bn : ΨB(b) = (p0, p1, . . . , pN−1)T =
N∑

i=1
piei

Often ΨB(b) is called the coordinate vector of b with respect to the basis B.

Lemma 1. The state space of probabilistic computations is isomorphic to the surface of
the unit sphere in the first quadrant of RN .

Bn ∼=
{

v ∈ RN
+

∣∣∣ ∥v∥ = 1
}

Proof. For an arbitrary state b the coordinate vector ΨB(b) = v is the direction of a
ray in the first quadrant of RN starting from the origin. Rescaling v results in the point
where this ray intersects the unit sphere φ(v) = v

∥v∥ = v′ which can be inverted by
φ−1(v′) = v′

∥v′∥1
= v. Thus, φ ◦ φ−1 = φ−1 ◦ φ = id and

ΨB(Bn) = {v ∈ RN
+ | ∥v∥1 = 1} ∼= {v ∈ RN

+ | ∥v∥ = 1}

3.2 Transition Matrices
It follows directly from eq. (1) that δ : span(B) → span(B) is a linear transformation on
the space spanned by state basis B and theorem 1 even states that δ : Bn → Bn and Bn

is closed under δ. It is well known, that the space of all linear maps homR(V, W) between
two finite-dimensional real vector spaces V and W is isomorphic to R(dim(W),dim(V)). So,
there must exist an isomorphism between transition functions δ and R(N,N).

Theorem 2. Let B = {bi}N
i=1 be a n-bit state basis and B = {vj}N

j=1 a basis of RN ,
then there exists a matrix A = (aij) ∈ R(N,N) such that

• ∀bi ∈ B : δ(bi) = ∑N
j=1 ajivj

7

• δ
(∑N

i=1 xibi

)
= ∑N

j=1 yjvj ⇐⇒ A(x1, x2, . . . , xN)T = (y1, y2, . . . , yN)T

Remark 3. Usually it is custom to choose the standard basis {ei}N
i=1 for RN , then theo-

rem 2 describes how A can be used to describe how δ affects basis states in coordinate
space. The j-th column vector Aej = aj = (a1j , a2j , . . . , aNj)T represents the proba-
bility distribution of δ(bj). It follows that aij = pji, with pji being the probability of
transitioning from bj to bi. Consequently, A = P T with P = (pij).

3.3 Measurements
The final component that sill needs to be expressed in the framework of linear algebra
are measurements. Let’s go back and think about what measuring actually means in
our case. The computational model described in section 2 provides a macroscopic view
of randomized computations. The result of such a randomized computation will be a
random state. Usually it is only of interest if a computation outputs a desired state given
a specific input, which entails the correctness of said computation. For randomized com-
putations, such an analysis requires the final random state distribution. Superposition
states are exactly that. Asking ”How likely is it to end up in state k?” corresponds to
measuring the quotient of k in the final superposition b. In the framework of linear
algebra this means calculating the scalar product (k . b).

Definition 7. Let b := ∑N
i=1 pibi ∈ Bn with basis states {bi}N

i=1, then there exist N
operators M̂k : Bn → [0, 1]

• in state space: M̂k(b) = (bk . b) = pk

• in coordinate space: Mk = bt
k ∈ R(1,N), Mkb = bt

kb With bt being the trans-
posed vector of b ∈ RN

4 Making it Quantum
Section 3 formulates mathematical tools to algebraically describe an abstract model of
probabilistic computations defined in section 2. This section takes a reverse approach.
The tools developed in section 3 are based on stochastic matrices, which is an obvi-
ous choice to model probabilistic state transitions. Unfortunately this model has some
shortcomings. This section first highlights these inconveniences and then fixes them. By
doing so the model will gain in computational power, demonstrated by the implementa-
tion of Deutsch’s algorithm. Finally, it will be shown that this extended model is indeed
physically realizable.

4.1 Cleaning Up
The straight forward and rather simplistic choice of using probability coefficients in
definitions 3 and 5 results in quite unwieldy state objects especially in the linear algebra
representation. Of course, the probability mass of a complete sample space must always

8

0

1

B1
b p0

p1

(a) todo

|0⟩

|1⟩

B1

α0

α1

|b⟩

b
α2

0

α2
1

(b) todo

sum up to 1, demanding the normalization of state vectors by the ∥.∥1 norm. The state
space Bn defined in this way is an affine combination of its basis vectors. For an 1-bit
system this corresponds to the line segment from 0 to 1 (see fig. 1a). As lemma 1 already
suggest, randomized computations could be viewed as rotating a ray around the origin. If
computations essentially are rotations, then angles between state vectors seem somewhat
important. Of course with a, b ∈ Bn it would be possible to calculate the angle between
both sates by rescaling their dot product by their lengths 0t1(|a||b|)−1. State vectors
with unit length would greatly simplify angle calculations. Then, the dot product would
suffice. Fortunately, lemma 1 states that Bn is isomorphic to a subset of the surface
of the unit sphere. Therefore, it should also be possible to represent the state space
as vectors with unit length. To distinguish between both representation we will write
state vectors with coordinates on the unit sphere as |b⟩. This notation is the standard
notation of quantum states. By definition the length of |b⟩ = ∑N

i=1 αi |bi⟩ is 1. The
linear coefficients αi are not probabilities but so-called probability amplitudes and the
Pythagorean theorem states that 1 = ∑N

i=1 α2
i . This means squaring the amplitudes or

taking the square root of probabilities maps between affine combinations of basis vectors
and points on the unit sphere in the state space. As it turns out negative amplitudes
must be allowed, thus this mapping is ambiguous and NOT an isomorphism.
amplitudes not probabilities
Transition matrix is not length preserving. Length preserving matrix: orthogonal
matrix -¿ negative coefficients -¿ interference -¿ Deutsch’s algorithm (new computa-
tional power)

9

