
A Brief Introduction to Quantum
Computation

Tom Krüger
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1 A Simple Computational Model
What are Qubits? That’s usually the first question getting addressed in any introduction
to quantum computing, for a good reason. If we want to construct a new computational
model, we first need to define the most basic building block: a single bit of information.
In classical computer science, the decision on how to define this smallest building block
of information seems quite straight forward. We just take the most basic logical fact:
either something is true or false, either 1 or 0. We have a name for an object holding this
information: a Bit. Let’s envision a computational model based on logical gates. Such
a gate has one or more inputs and an output, with each either being true or false. Now
consider a bit b and a gate f : {0, 1} → {0, 1}. We have a bit of information b and can
get another bit of information b′ := f(b). In a final third step, we introduce a timescale,
which means that now our bit of information is time dependent. It can have different
values at different times. To make it easier, we choose a discrete timescale. Our Bit b
has a distinct value on each point on the timescale. A value of a bit can only be changed
in between time steps, by applying a logical gate to it:

Bit b
f1→ b

f2→ · · · → b
fk→ b

time t0 → t1 → · · · → tk−1 → tk

Of course, we need more than one bit of information, if we want to be able to perform
meaningful computations. For this, we simply look at a list, vector or register of bits
b ∈ {0, 1}n and modify our gates to be functions f : {0, 1}n → {0, 1}n mapping from
bit vectors to bit vectors.

Let’s recap: We’ve now designed a computational model with just three components.

• A notion of Information: bits and registers.

• A way of reasoning: logical gates.

• A dimension to do the reasoning in: the timescale
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Notice how the system described above is fully deterministic. The state bl of our
system at time tl recursively defined by:

bl =
{

fl(bl−1) if l > 0
b0 otherwise

Or by the composition of all gate applications up to this point: (fl ◦ fl−1 ◦ · · · ◦ f1)(b0).
Actually, a composition of gates is also just another logical gate F := (fl ◦fl−1 ◦· · ·◦f1) :
{0, 1}n → {0, 1}n. If we are not interested in intermediate states, we can thus define our
computation in the form of bout := F (bin)‘, with ‘F : {0, 1}n → {0, 1}n.

2 A Bit of Randomness
2.1 Single Bits in Superposition
Many real world problems are believed (if P ̸= NP) to don’t be efficiently solvable on
fully deterministic computers like the model described above. Fortunately, it turns out
that if we allow for some randomness in our algorithms, we’re often able to efficiently
find solutions for such hard problems with sufficiently large success probabilities. Often
times, the error probabilities can even be made exponentially small. For this reason, we
also want to introduce randomness into our model. Algorithms or computational models
harnessing the power of randomness are usually called probabilistic.

Again, we start with simple one bit systems. Later, we’ll see how to expand the
following methods to full bit vectors/registers. In the deterministic single bit model
above, the state transition of a bit b in step t is defined by ft(b) ∈ {0, 1}. Now, the
transition function (or gate) is simply allowed to flip an unfair coin and either output
0 or 1 for heads or tails respectively. Of course, the state of b prior to the transition
should have an effect on the computation. That is, why we allow different (unfair)
coins for either b = 0 or b = 1. To distinguish between deterministic and probabilistic
transition functions, we will denote the latter by δ(b) ∈ {0, 1}. Or to reformulate this
idea: Depending on the value of b, the output of δ(b) follows one of two Bernoulli trials.
There are 4 possible transitions with probabilities p00, p01, p10 and p11, where pij is the
probability of b transitioning form i to j. Obviously, ∑

j pij = 1 always needs to be
satisfied.

p00 := P (δ(b) = 0 | b = 0)
p01 := P (δ(b) = 1 | b = 0)
p10 := P (δ(b) = 0 | b = 1)
p11 := P (δ(b) = 1 | b = 1)

Note that we regain our deterministic transition function f from δ, if we restrict the
probabilities: p00, p10 ∈ {0, 1}. At this point, we can randomize our computation from
above as follows:

Bit b
δ1→ b

δ2→ · · · → b
δk→ b

time t0 → t1 → · · · → tk−1 → tk
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Let’s have a look at the state of b after the first transition. In the deterministic model,
we know with certainty that at this point in time, b will have the value f1(b). In a
probabilistic model, we can not predict the value of b at time t1 with 100% certainty. In
the terminology of probability theory, a probabilistic state transition or even the whole
computation would be an experiment and the value of bit b at time t would be described
by a random variable Xt. Random variables are defined to take a value out of a set of
predefined value options Ω = {ω1, . . . , ωn} with certain probabilities p1, . . . , pn for each
value. Only after we perform the experiment and observe its outcome, we get a specific
value xt of the random variable Xt. We say that xt is a random sample or realization of
Xt. If we don’t want to or can’t sample (perform) the experiment, we still could compute
the expected value E(Xt) = ∑

i piωi (if Ω mathematically allows for such operations).
Let’s return to our example: Just as in the deterministic case we would like to predict

the state of b after the transition δt. For this we want to calculate the expected state of
b at time t. Let pt

ij be the transition probabilities of δt, furthermore pt
b=x denotes the

probability of b being in state x at time t. Now we have:

E(δt(b)) = pt
b=0 · 0 + pt

p=1 · 1 (1)

pt
b=x =

{
pt

0x · pt−1
b=0 + pt

1x · pt−1
b=1 , t > 0

0, 1 otherwise
(2)

It is important to note, that 0 and 1 in eq. (1) are not the scalar values of b. They define
abstract objects denoting the fact that b is in state 0 or 1, so they are just arbitrary
labels. For instance, same states could also be labeled {T, F} or {⊤, ⊥}. But if 0 and 1
are some kind of abstract object and not scalar value, how can eq. (1) be evaluated? As
of now it can’t. Later we will define representations of these abstract stats, which are
closed under addition and scalar multiplication, making eq. (1) also (a representation
of) an abstract state.

From eq. (1), we will now derive a standard form of our random bit b. We don’t view b
as being either in state 0 OR 1 anymore. From now on, we think of b as being in 0 AND
1 simultaneously with certain probabilities pb=0 and pb=1, so b is in a superposition:

b = p00 + p11 , p0 + p1 = 1

Until now, we have not given an explicit definition of the transition function δ, apart
from describing its effect. This is partly the case because we were lacking a formalism to
describe uncertain states, so there was no direct way to describe the output of δ(b). The
other big problem would have been the question of how to handle an uncertain input
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state. Building on the superposition formalism δ(b) can be defined as a linear function:

δ(b) = δ(p00 + p11)
= p0δ(0) + p1δ(1)
= p0(p000 + p011) + p1(p100 + p111)
= (p0p00 + p1p10)︸ ︷︷ ︸

=:p′
0

0 + (p0p01 + p1p11)︸ ︷︷ ︸
=:p′

1

1

A simple calculation verifies that

p′
0 + p′

1 = (p0p00 + p1p10) + (p0p01 + p1p11)
= p0 (p00 + p01)︸ ︷︷ ︸

=1

+p1 (p10 + p11)︸ ︷︷ ︸
=1

= p0 + p1 = 1

and thus δ preserves valid superpositions, which finally makes predictions of the full
computation through all steps possible. In line with the fully deterministic model the
state of b at time t can be described by:

bt =
{

δt(bt−1) if t > 0
b0 ∈ {0, 1} otherwise

= (δt ◦ δt−1 ◦ · · · ◦ δ1)(b0)
(3)

2.2 Bit Registers in Superposition

3 Introducing: Linear Algebra

4 Making it Quantum
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